

Gobierno del Principado de Asturias

VERSIÓN
DICIEMBRE-23

ASESORÍA CIENTÍFICA PARA LA EJECUCIÓN DEL PLAN DE ACTUACIÓN PARA LA DETECCIÓN Y CONTROL DEL AVISPÓN ASIÁTICO EN EL PRINCIPADO DE ASTURIAS

Departamento de Biología de Organismos y Sistemas

Universidad de Oviedo

Omar Sánchez Fernández Ricardo López Alonso Esteban Pascual Parra Andrés Arias Rodríguez

Oviedo, 18 de diciembre de 2023

Tabla de contenidos

Α	ntecedentes		2
1	Estudio fa	aunístico del trampeo de <i>Vespa velutina</i>	3
	1.1 ANÁ	LISIS DE LAS ESTACIONES	5
	1.1.1	ESTACIÓN CSO0001	5
	1.1.2	ESTACIÓN OVI0001	11
	1.1.3	ESTACIÓN SOT0001	17
	1.1.4	ESTACIÓN GIJ0014	23
	1.1.5	ESTACIÓN VIL0002	29
	1.1.6	ESTACIÓN NAR0001	35
	1.2 ANÁ	LISIS CONJUNTO DE LAS ESTACIONES	41
	1.3 ANÁ	LISIS COMPARATIVO CAMPAÑAS 2021-2023	46
	1.3.1	ESTACIÓN CSO0001	46
	1.3.2	ESTACIÓN OVI0007	54
	1.3.3	ESTACIÓN SOT0003	62
	1.3.4	ESTACIÓN GIJ0003	70
	1.3.5	ESTACIÓN VIL0019	77
	1.3.6	ESTACIÓN NAR0021	85
2	Análisis d	le impacto del trampeo de Avispa asiática en la comunidad de Véspidos	y Ápidos
(ŀ	•	a)	
	2.1 Fam	ilia Vespidae	
	2.1.1	Vespa crabro	106
	2.1.2	Vespa velutina	112
	2.1.3	Vespula germanica	118
	2.1.4	Vespula vulgaris	124
	2.1.5	Dolichovespula media	130
	2.1.6	Dolichovespula sylvestriss	133
	2.1.7	Polistes dominula	135
	2.2 Fam	ilia Apidae	137
	2.2.1	Apis mellifera	137
	2.2.2	Bombus terrestris lusitanicus	140
	2.2.3	Bombus bohemicus	143
	2.2.4	Bombus cullumanus	143
	2.2.5	Bombus hortorum	144
	2.3 Estu	dio comparativo 2022-2023	145
3	Consider	aciones finales	148
4	Referenc	ias	150

Antecedentes

Vespa velutina Lepeletier, 1836, es una especie de avispa originaria del continente asiático perteneciente a la familia Vespidae y comúnmente conocida como "avispa de patas amarillas" o "avispa o avispón asiático". Esta especie ha sido introducida en Europa accidentalmente alrededor del año 2004, detectándose por primera vez en la localidad francesa de Lot-et-Garonne (Haxaire et al, 2006; Villemant et al, 2006). A partir de su introducción en Francia, ha logrado colonizar rápidamente otros países como España, Portugal, Bélgica, Italia, el Reino Unido, Holanda y Alemania. Actualmente en España se encuentra prácticamente en la mitad norte peninsular, a excepción de algunas provincias de la Comunidad Autónoma de León y la Comunidad Autónoma de Madrid. La avispa asiática es un depredador generalista de insectos de mediano tamaño como otros himenópteros y dípteros, mostrando especial predilección por las abejas de la miel (*Apis* spp.) (Haxaire et a, 2006; Villemant et al, 2006). Tras su rápida y exitosa naturalización ha desarrollado un claro comportamiento invasor, afectando principalmente a las poblaciones de abejas melíferas europeas (Apis mellifera Linnaeus, 1758) con las consiguientes repercusiones, económicas y ecológicas (Monceau et al, 2014). De forma paralela, al igual que otros véspidos, su picadura puede suponer problemas serios a las personas alérgicas (Haro et al, 2010). En España, la avispa asiática está considerada oficialmente como una especie invasora y aparece incluida en el Catálogo Español de Especies Exóticas Invasoras (Real Decreto 630/2013, de 2 de agosto, por el que se regula dicho catálogo).

Para intentar contener y frenar el avance de la avispa asiática, las administraciones locales, apicultores y particulares, han diseminado diferentes tipologías de trampas para su captura en las localidades invadidas. Estas trampas, en su mayoría basadas en un atrayente azucarado, no resultan todo lo selectivas que deberían ser, ya que atraen y capturan muchas otras especies de insectos. Se ha visto que en estas trampas atraen otros insectos como muchas especies de dípteros (moscas y mosquitos) así como otros himenópteros (hormigas, abejas y avispas). Este hecho podría suponer un daño colateral sobre la fauna local, ya que entre estas capturas incidentales se pueden encontrar especies de insectos que actúan como polinizadores y, desempeñan un papel ecológico clave en nuestros ecosistemas. Por tanto, los métodos de trampeo de *V. velutina*, así como los de otras especies invasoras, tienen que evolucionar hacia una mayor especificidad y capturar en la mayor proporción posible la especie objetivo. Por la poca información disponible y por los efectos que podría suponer la pérdida de ciertos grupos de insectos como los polinizadores, resulta crucial conocer la fauna afectada por la instalación de trampas para el control de la avispa asiática en Asturias.

El principal objetivo de este trabajo es proporcionar información sobre las consecuencias potenciales en la entomofauna nativa y el ecosistema de los métodos de trampeo utilizados para el control de *V. velutina* en el Principado de Asturias. De igual modo, se ha abordado el estudio del impacto del trampeo de avispa asiática sobre la comunidad de himenópteros vespoideos y apoideos.

1 Estudio faunístico del trampeo de Vespa velutina

En este estudio se ha analizado la diversidad de insectos capturados inintencionadamente en trampas para el control de *V. velutina*. De las 71 localidades muestreadas, se ha tomado una muestra representativa de un total de 6 localidades (Figura 1; Tabla 1). Las localidades se eligieron en función de su ubicación geográfica. Se eligieron una localidad de la zona occidental, dos de la parte oriental y tres situadas en la zona centro, próximas a las ciudades de Oviedo, Gijón y Soto del Barco. La tipología de trampas utilizada fue el modelo comercial VespaCatch® de Véto-pharma (Palaiseau, Francia) rellenadas con el líquido atrayente VespaCatch® de la misma casa comercial (información complementaria en https://www.blog-veto-pharma.com/). Para este estudio se realizaron tres muestreos, a principios de abril de 2023, a finales de abril de 2023 y a principios o finales de mayo de 2023 según la muestra.

Para la identificación de los individuos capturados se han utilizado carácteres morfológicos externos así como estructura y disposición de la genitalia siguiendo los trabajos de Monclús (1964), Peris (1967), D'Assis-Fonseca (1968), González-Mora & Peris (1988), González-Mora (1990), Haenni (1997), Rozkošný (1997), Krivosheina & Menzel (1998), Dvořák & Roberts (2006), Oosterbroek (2006), Scudder & Cannings (2006), Nihei & De Carvalho (2009), Szpila (2009), Whitmore, (2009), Jones et al (2019) y Safonkin et al (2020).

La información geográfica y la elaboración de ortofotos fue procesada mediante el Sistema de Información Geográfica libre y de Código Abierto QGIS 3.16.2® y Google Earth®.

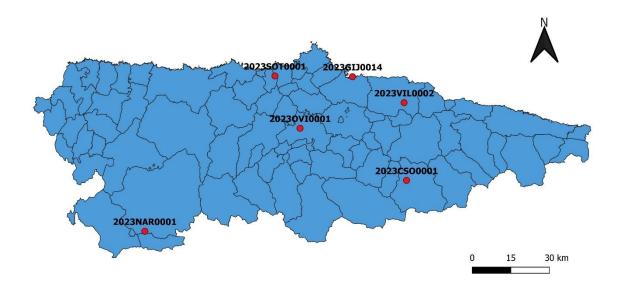
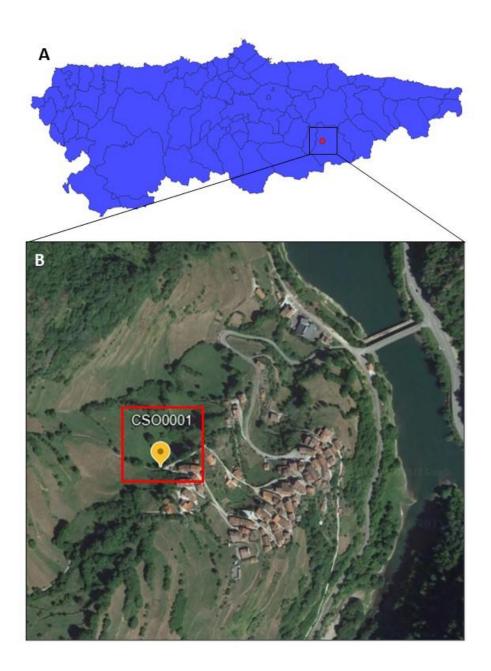


Figura 1. Situación de las estaciones elegidas para este estudio en el Principado de Asturias.


Tabla 1. Información geográfica de las diferentes estaciones analizadas.

Estación	Latitud	Longitud	Concejo	Muestreo	Fecha	
		-6,031243018		A. SOT0001	13/04/2023	
SOT0001	43,54279712		Soto del Barco	В. SOT0001	25/04/2023	
				C. SOT0001	09/05/2023	
				A. GIJ0014	13/04/2023	
GIJ0014	43,54765433	-5,660311616	Gijón	B. GIJ0014	25/04/2023	
				C. GIJ0014	23/05/2023	
		-5,408720411		A. VIL0002	10/04/2023	
VIL0002	43,46241012		Villaviciosa	B. VIL0002	26/04/2023	
				C. VIL0002	26/05/2023	
	43,36144753	-5,903430394		A. OVI0001	11/04/2023	
OVI0001			Oviedo	B. OVI0001	28/04/2023	
				C. OVI0001	18/05/2023	
				A. NAR0001	04/04/2023	
NAR0001	43,16550363	-6,510312370	Cangas del Narcea	B. NAR0001	26/04/2023	
				C. NAR0001	26/05/2023	
		-5,387230552		A. CSO0001	14/04/2023	
CSO0001	43,19054126		Caso	B. CSO0001	28/04/2023	
				C. CSO0001	17/05/2023	

1.1 ANÁLISIS DE LAS ESTACIONES.

1.1.1 **ESTACIÓN CSO0001**

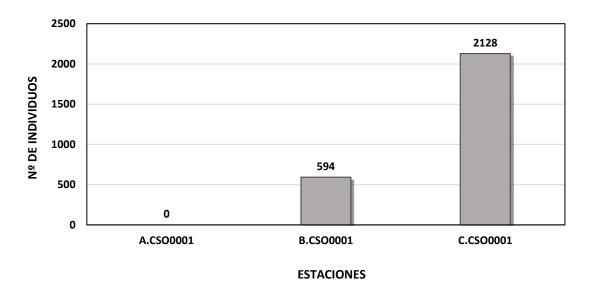
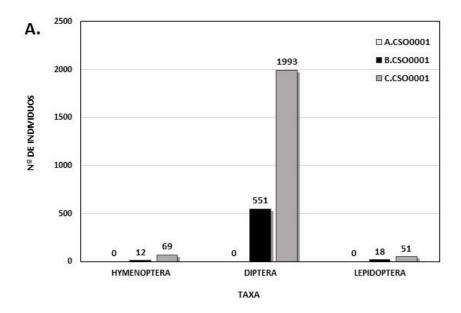

Situación geográfica: La estación CSO0001 está situada en las cercanías de la aldea de Coballes (43,19054126 N, -5,38723050 E), ubicada en las orillas del embalse de Tanes y situada a 3.6 Km de la capital del concejo, Campo de Caso (Caso). La población más cercana, además de la propia aldea de Coballes, es el pueblo de Abantro, situado a 1,5 km (Figura 2).

Figura 2. Situación de la estación CSO0001 en Principado de Asturias (A). Ortofoto de las cercanías de la estación CSO0001 (B).

Ambiente: La trampa está situada en un ambiente rural dominado por la asociación fitosociológica Linario triornithophorae-Quercetum petraeae caracterizado por estructuras forestales abiertas cuyas fases maduras presentan un estrato arbóreo formado por roble albar (Quercus petraea) que convive, en ocasiones, con roble cantábrico (Quercus orocantabrica), abedules (Betula celtiberica) y rebollos (Quercus pyrenaica). En el estrato arbustivo pueden aparecer avellanos (Corylus avellana), acebos (Ilex aquifolium), arraclanes (Frangula alnus), brezo blanco (Erica arborea), brezo rojo (Erica australis subsp. aragonensis), escoba negra (Cytisus scoparius), arándanos (Vaccinium myrtillus) y mostajo (Sorbus aria). Entre las matas tenemos brezos (género Erica, Daboecia cantabrica, Calluna vulgaris) y tojos (Ulex gallii). Entre las lianas, son frecuentes las madreselvas (Lonicera periclymenum). El estrato herbáceo es denso y abundante donde destacan las gramíneas Avenella flexuosa, Festuca paniculata subsp. multiespiculata, Pseudarrhenatherum longifolium y Holcus mollis, el escordio bastardo (Teucrium scorodonia), la boraginácea Omphalodes nitida y los paxarinos (Linaria triornithophora). El helecho común (Pteridium aquilinum) es prácticamente el único pteridófito (Díaz-González, 2014; 2021).


Resultados: Se analizaron un total de 2722 individuos, agrupados en 4 órdenes del Filo Arthropoda, donde aquellos con mayor abundancia de individuos resultaron ser el Orden Diptera y el Orden Hymenoptera, representando respectivamente el 93,46% y 2,98% del total de individuos capturados en la estación CSO0001 (Tabla 2; Figura 4). El muestreo con mayor número de individuos atrapados fue el C.CSO0001 con un total de 2128 individuos, representando el 78,18% del total de las capturas (Figura 3).

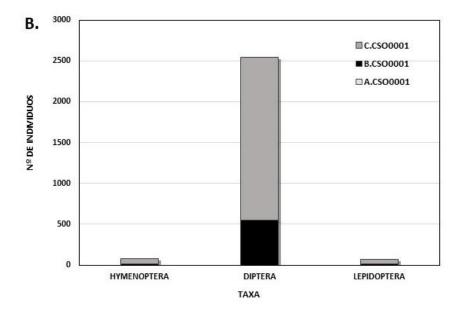


Figura 3. Número total de individuos capturados en los diferentes muestreos realizados en la estación CSO0001.

Tabla 2. Resultados de la captura total en la estación CSO0001 y en los tres muestreos analizados (A. CSO0001; B. CSO0001; C. CSO0001). Se indica el número medio de individuos por trampa, desviación estándar (DS) y el porcentaje de individuos capturados sobre el número total de insectos atrapados en la estación CSO0001. En rojo las especies invasoras detectadas.

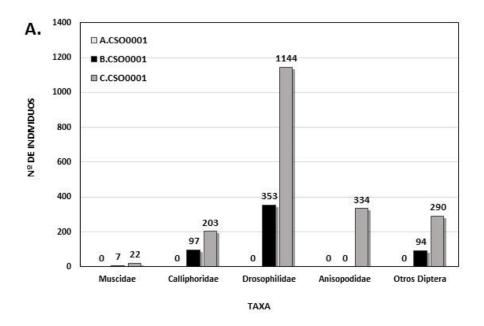
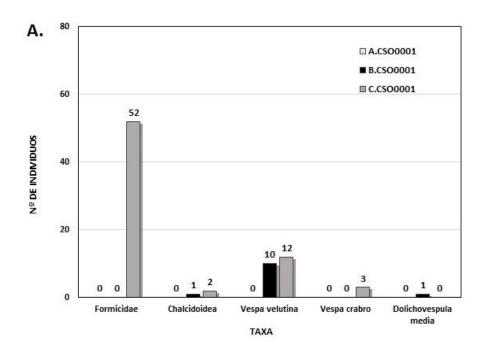

Orden	Таха	A.CSO0001	B.CSO0001	C.CSO0001	TOTAL	%TOTAL	MEDIA	SD
	Scatophagidae	0	7	6	13	0,48%	4,3	3,8
	Anthomyiidae	0	66	75	141	5,18%	47,0	41,0
	Muscidae	0	7	22	29	1,07%	9,7	11,2
	Fannidae	0	2	7	9	0,33%	3,0	3,6
	Calliphoridae	0	97	203	300	11,02%	100,0	101,5
	Sarcophagidae	0	0	1	1	0,04%	0,3	0,6
	Dryomycidae	0	2	14	16	0,59%	5,3	7,6
DIPTERA	Aulacigastridae	0	14	157	171	6,28%	57,0	86,9
	Otros Drosophilidae	0	337	1144	1481	54,41%	493,7	587,9
	Drosophila suzukii	0	16	0	16	0,59%	8,0	11,3
	Anisopodidae	0	0	334	334	12,27%	111,3	192,8
	Sciaridae	0	0	4	4	0,15%	1,3	2,3
	Mycetophilidae	0	2	0	2	0,07%	1,0	1,4
	Syrphidae	0	1	2	3	0,11%	1,0	1,0
	Scatopsidae	0	0	24	24	0,88%	8,0	13,9
	Formicidae	0	0	52	52	1,91%	17,3	30,0
	Chalcidoidea	0	1	2	3	0,11%	1,0	1,0
HYMENOPTERA	Vespa velutina	0	10	12	22	0,81%	7,3	6,4
	Vespa crabro	0	0	3	3	0,11%	1,0	1,7
	Dolichovespula media	0	1	0	1	0,04%	0,3	0,6
	Staphilinidae	0	4	2	6	0,22%	2,0	2,0
COLEOPTERA	Cerambycidae	0	1	0	1	0,04%	0,3	0,6
	Nitidulidae	0	8	13	21	0,77%	7,0	6,6
LEPIDOPTERA		0	18	51	69	2,53%	23,0	25,9
TOTAL		0	594	2128	2722	100%	907,3	1098,06
%TOTAL		0,00%	21,82%	78,18%				

Figura 4. Número de individuos de los principales órdenes capturados en los diferentes muestreos de la estación CSO0001 (A). Número total de individuos de los principales órdenes capturados en la estación CSO0001 (B).


Diptera: se detectaron un total de 2544 individuos agrupados en 14 familias, donde aquellas con mayor abundancia de individuos resultaron ser la familia Drosophilidae, la familia Anisopodidae y la familia Calliphoridae, representando respectivamente el 55,00%, 12,27% y el 11,02% del total de individuos capturados en la estación CSO0001 (Figura 5). Destaca la presencia de la especie invasora *Drosophila suzukii* (Familia Drosophilidae), representando el 0,59% de las capturas totales de la estación.

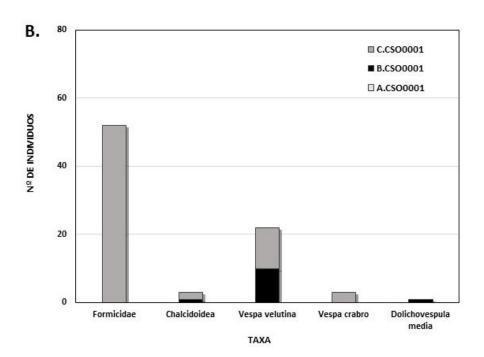


Figura 5. Número de individuos capturados del orden Diptera en los diferentes muestreos realizados en la estación CSO0001 (A). Número total de individuos capturados del orden Diptera en la estación CSO0001 (B).

Hymenoptera: se detectaron un total de 81 individuos agrupados en 5 taxones donde aquel con mayor abundancia de individuos resultó ser la Familia Formicidae, representando el 1,91% de las capturas totales de la estación. Destaca la presencia de la especie invasora *Vespa velutina* (Fam. Vespidae), representando el 0,81% del total de individuos capturados en la estación CSO0001 (Figura 6).

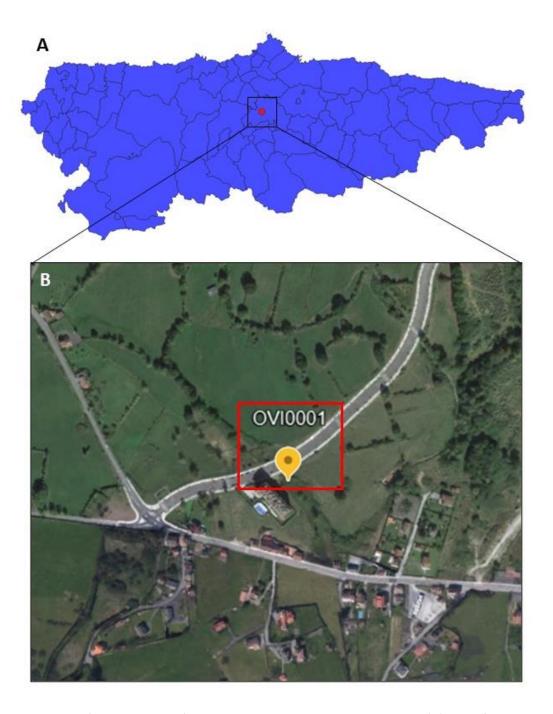


Figura 6. Número de individuos capturados del orden Hymenoptera en los diferentes muestreos realizados en la estación CSO0001 (A). Número total de individuos capturados del orden Hymenoptera en la estación CSO0001 (B).

Otros órdenes: se detectaron un total de 97 individuos de otros dos órdenes donde aquel con mayor abundancia de individuos resultó ser el Orden Lepidoptera, representando el 2,53% del total de individuos capturados en la estación CSO0001 (Tabla 2).

1.1.2 **ESTACIÓN OVI0001**

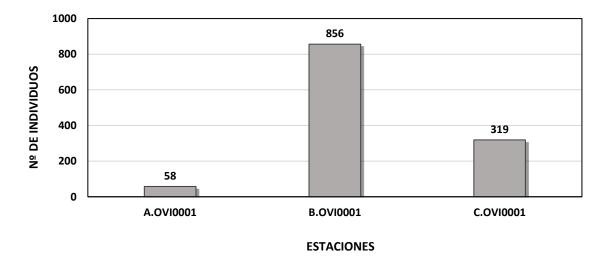
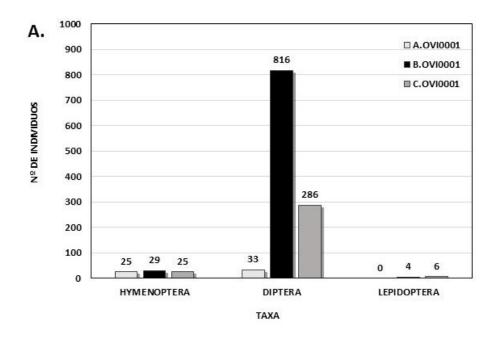

Situación geográfica: La estación OVI0001 está situada en las cercanías de la localidad de La Lloral, perteneciente a la parroquia de San Claudio (43,36137245 N, -5,903296954 E), situada a 4,3 Km de la capital del concejo, Oviedo (Oviedo). La población más cercana, además de La Lloral, es el pueblo de Villamar, situado a 0,7 km (Figura 7).

Figura 7. Situación de la estación OVI0001 en Principado de Asturias (A). Ortofoto de las cercanías de la estación OVI0001 (B).

Ambiente: La trampa está situada en un ambiente rural dominado por la asociación fitosociológica Polysticho setiferi-Fraxinetum excelsioris caracterizado por un estrato arbóreo constituido por carbayos (Quercus robur), fresnos comunes (Fraxinus excelsior) y castaños (Castanea sativa). En ocasiones llegan a dominar arces o pláganos (Acer pseudoplatanus), olmos de montaña (Ulmus glabra) y tilares blanquecinos (Tilia platyphyllos). Bajo el dosel arbóreo crecen arbustos como el cornejo (Cornus sanguinea), el avellano (Corylus avellana), escaramujos (Rosa sempervirens), el laurel (Laurus nobilis), endrinos (Prunus spinosa) acebos (Ilex aquifolium), artos (Rubus ulmifolius), espineras, espino blanco (Crataegus monogyna), ruscos (Ruscus aculeatus), aligustres (Liqustrum vulqare), y plantas como la hoja de pulmón (Pulmonaria longifolia), la primavera (Primula acaulis), la oreja de monte (Saxifraga hirsuta), la espadaña fétida (Iris foetidissima), el eléboro verde (Helleborus viridis subsp. occidentalis) y numerosos helechos (Polystichum setiferum, Phyllitis scolopendrium, Athyrium filix-femina, Dryopteris affinis, Dryopteris filix-mas, etc). Destacan las lianas y plantas trepadoras como la hiedra (Hedera helix), la nuez negra (Tamus communis), los raspalenguas (Rubia peregrina), las madreselvas (Lonicera periclymenum) y la hierba del pordiosero (Clematis vitalba) (Díaz-González, 2014; 2021).


Resultados: Se analizaron un total de 1233 individuos, agrupados en 5 órdenes del Filo Arthropoda, donde aquellos con mayor abundancia de individuos resultaron ser el Orden Diptera y el Orden Hymenoptera, representando respectivamente el 92,05% y 6,41% del total de individuos capturados en la estación OVI0001 (Tabla 3; Figura 9). El muestreo con mayor número de individuos atrapados fue el B.OVI0001 con un total de 856 individuos, representando el 69,42% del total de las capturas (Figura 8).

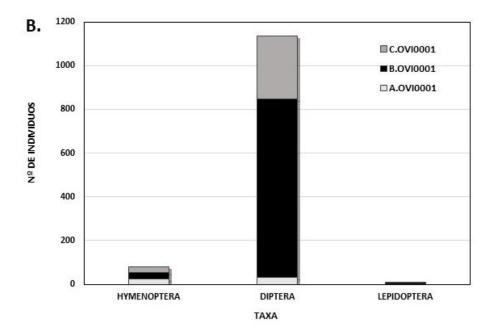
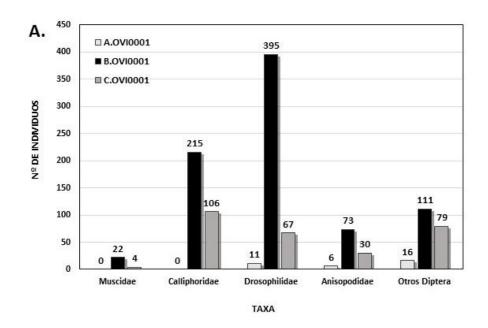


Figura 8. Número total de individuos capturados en los diferentes muestreos realizados en la estación OVI0001.

Tabla 3. Resultados de la captura total en la estación OVI0001 y en los tres muestreos analizados (A. OVI0001; B. OVI0001; C. OVI0001). Se indica el número medio de individuos por trampa, desviación estándar (DS) y el porcentaje de individuos capturados sobre el número total de insectos atrapados en la estación OVI0001. En rojo las especies invasoras detectadas.


Orden	Таха	A.OVI0001	B.OVI0001	C.OVI0001	TOTAL	%TOTAL	MEDIA	SD
	Scatophagidae	1	33	7	41	3,33%	13,7	17,0
	Anthomyiidae	7	37	9	53	4,30%	17,7	16,8
	Muscidae	0	22	4	26	2,11%	8,7	11,7
	Fannidae	0	5	6	11	0,89%	3,7	3,2
	Calliphoridae	0	215	106	321	26,03%	107,0	107,5
	Sarcophagidae	0	3	0	3	0,24%	1,0	1,7
	Dryomycidae	0	3	6	9	0,73%	3,0	3,0
DIPTERA	Cecidomyiidae	0	0	4	4	0,32%	1,3	2,3
	Aulacigastridae	0	23	44	67	5,43%	22,3	22,0
	Otros Drosophilidae	11	335	50	396	32,12%	132,0	176,9
	Drosophila suzukii	0	60	17	77	6,24%	25,7	30,9
	Anisopodidae	6	73	30	109	8,84%	36,3	33,9
	Sciaridae	7	7	0	14	1,14%	4,7	4,0
	Syrphidae	0	0	3	3	0,24%	1,0	1,7
	Phoridae	1	0	0	1	0,08%	0,3	0,6
	Formicidae	25	16	5	46	3,73%	15,3	10,0
	Chalcidoidea	0	3	3	6	0,49%	2,0	1,7
HYMENOPTERA	Vespa velutina	0	7	13	20	1,62%	6,7	6,5
	Vespula vulgaris	0	1	2	3	0,24%	1,0	1,0
	Vespula germanica	0	2	2	4	0,32%	1,3	1,2
COLEOPTERA	Staphilinidae	0	0	2	2	0,16%	0,7	1,2
	Nitidulidae	0	5	0	5	0,41%	1,7	2,9
ARANEA	Gnaphosidae	0	2	0	2	0,16%	0,7	1,2
LEPIDOPTERA		0	4	6	10	0,81%	3,3	3,1
TOTAL		58	856	319	1233	100%	411,0	406,88
%TOTAL		4,70%	69,42%	25,87%				

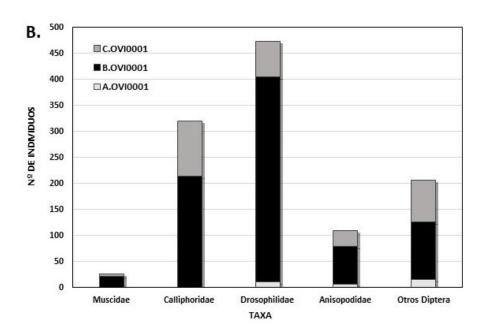
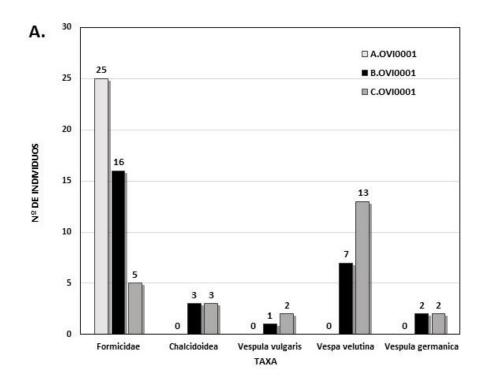


Figura 9. Número de individuos de los principales órdenes capturados en los diferentes muestreos realizados en la estación OVI0001 (A). Número total de individuos capturados de los principales órdenes en la estación OVI0001 (B).


Diptera: se detectaron un total de 1135 individuos agrupados en 14 familias, donde aquellas con mayor abundancia de individuos resultaron ser la familia Drosophilidae y la familia Calliphoridae, representando respectivamente el 38,36% y 26,03% del total de individuos capturados en la estación OVI0001 (Figura 10). Destaca la presencia de la especie invasora *Drosophila suzukii* (Familia Drosophilidae), representando el 6,24% de las capturas totales de la estación.

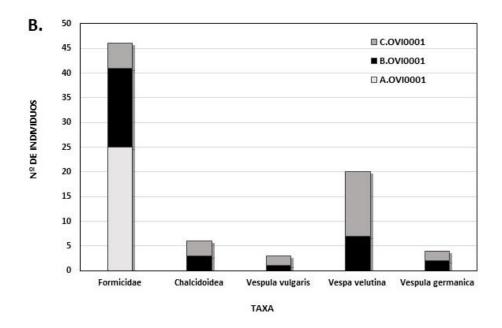


Figura 10. Número de individuos capturados del orden Diptera en los diferentes muestreos realizados en la estación OVI0001 (A). Número total de individuos capturados del orden Diptera en la estación OVI0001 (B).

Hymenoptera: se detectaron un total de 79 individuos agrupados en 5 taxones, donde aquel con mayor abundancia de individuos resultó ser la familia Formicidae, representando el 3,73% del total de individuos capturados en la estación OVI0001 (Figura 11). Destaca la presencia de la especie invasoras *Vespa velutina* (Familia Vespidae) representando el 1,62% de las capturas totales de la estación.

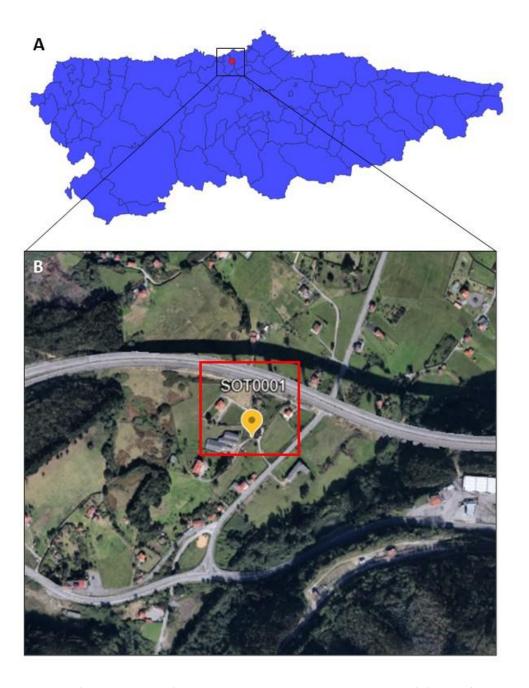


Figura 11. Número de individuos capturados del orden Hymenoptera en los diferentes muestreos realizados en la estación OVI0001 (A). Número total de individuos capturados del orden Hymenoptera en la estación OVI0001 (B).

Otros órdenes: se detectaron un total de 19 individuos de otros tres grupos taxonómicos donde aquellos con mayor abundancia de individuos resultaron ser el Orden Lepidoptera y el Orden Coleoptera representando respectivamente el 0,81% y 0,57% del total de individuos capturados en la estación OVI0001 (Tabla 3).

1.1.3 **ESTACIÓN SOTO001**

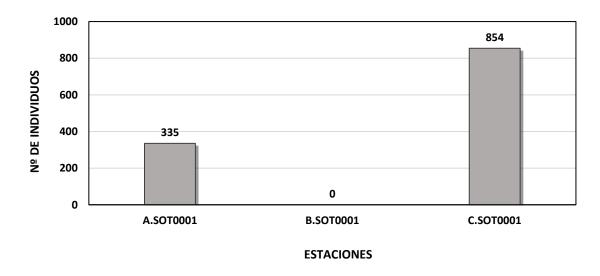
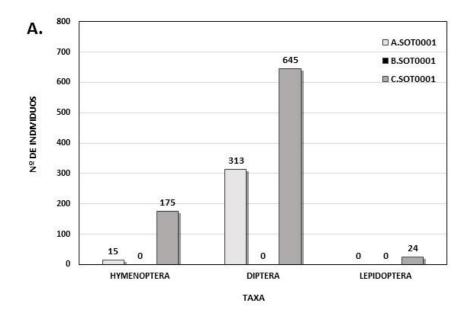

Situación geográfica: La estación SOT0001 está situada en las cercanías de la localidad de Carcedo (43,54279712 N, -6,031243018 E), ubicada a 3.2 Km de la capital del concejo, Soto del Barco (Soto del Barco). La población más cercana, además del propio Carcedo, es la aldea de Riocuevas, situada a 0,7 km (Figura 12).

Figura 12. Situación de la estación SOT0001 en Principado de Asturias (A). Ortofoto de las cercanías de la estación SOT0001 (B).

Ambiente: La trampa está situada en un ambiente rural dominado por la asociación fitosociológica Polysticho setiferi-Fraxinetum excelsioris caracterizado por un estrato arbóreo constituido por carbayos (Quercus robur), fresnos comunes (Fraxinus excelsior) y castaños (Castanea sativa). En ocasiones llegan a dominar arces o pláganos (Acer pseudoplatanus), olmos de montaña (Ulmus glabra) y tilares blanquecinos (Tilia platyphyllos). Bajo el dosel arbóreo crecen arbustos como el cornejo (Cornus sanguinea), el avellano (Corylus avellana), escaramujos (Rosa sempervirens), el laurel (Laurus nobilis), endrinos (Prunus spinosa) acebos (Ilex aquifolium), artos (Rubus ulmifolius), espineras, espino blanco (Crataegus monogyna), ruscos (Ruscus aculeatus), aligustres (Ligustrum vulgare), y plantas como la hoja de pulmón (Pulmonaria longifolia), la primavera (Primula acaulis), la oreja de monte (Saxifraga hirsuta), la espadaña fétida (Iris foetidissima), el eléboro verde (Helleborus viridis subsp. occidentalis) y numerosos helechos (Polystichum setiferum, Phyllitis scolopendrium, Athyrium filix-femina, Dryopteris affinis, Dryopteris filix-mas, etc). Destacan las lianas y plantas trepadoras como la hiedra (Hedera helix), la nuez negra (Tamus communis), los raspalenguas (Rubia peregrina), las madreselvas (Lonicera periclymenum) y la hierba del pordiosero (Clematis vitalba) (Díaz-González, 2014; 2021).


Resultados: Se analizaron un total de 1189 individuos, agrupados en 7 órdenes/superordenes del Filo Arthropoda, donde aquellos con mayor abundancia de individuos resultaron ser el Orden Diptera y el Orden Hymenoptera, representando respectivamente el 85,57% y 15,98% del total de individuos capturados en la estación SOT0001 (Figura 14; Tabla 4). El muestreo con mayor número de individuos atrapados fue el C.SOT0001 con un total de 854 individuos, representando el 71,83% del total de las capturas (Figura 13).

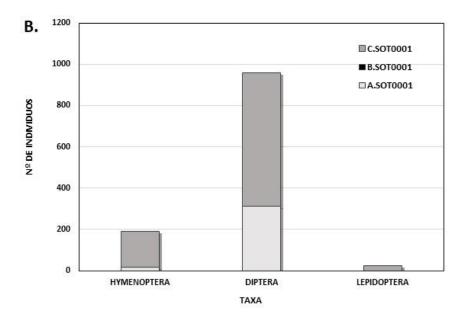
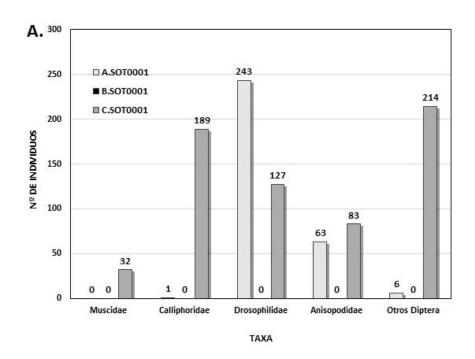


Figura 13. Número total de individuos capturados en los diferentes muestreos realizados en la estación SOT0001.

Tabla 4. Resultados de la captura total en la estación SOT0001 y en los tres muestreos analizados (A. SOT0001; B. SOT0001; C. SOT0001). Se indica el número medio de individuos por trampa, desviación estándar (DS) y el porcentaje de individuos capturados sobre el número total de insectos atrapados en la estación SOT0001. En rojo las especies invasoras detectadas.


Orden	Таха	A.SOT0001	B.SOT0001	C.SOT0001	TOTAL	%TOTAL	MEDIA	SD
	Scatophagidae	0	0	8	8	0,67%	2,7	4,6
	Anthomyiidae	2	0	73	75	6,31%	25,0	41,6
	Muscidae	0	0	32	32	2,69%	10,7	18,5
	Fannidae	0	0	13	13	1,09%	4,3	7,5
	Calliphoridae	1	0	189	190	15,98%	63,3	108,8
	Sarcophagidae	0	0	9	9	0,76%	3,0	5,2
	Dryomycidae	0	0	19	19	1,60%	6,3	11,0
	Cecidomyiidae	0	0	1	1	0,08%	0,3	0,6
DIPTERA	Aulacigastridae	0	0	30	30	2,52%	10,0	17,3
	Otros Drosophilidae	154	0	38	192	16,15%	64,0	80,2
	Drosophila suzukii	89	0	89	178	14,97%	59,3	51,4
	Anisopodidae	63	0	83	146	12,28%	48,7	43,3
	Sciaridae	0	0	50	50	4,21%	16,7	28,9
	Mycetophilidae	4	0	1	5	0,42%	1,7	2,1
	Otitidae	0	0	3	3	0,25%	1,0	1,7
	Ulididae	0	0	1	1	0,08%	0,3	0,6
	Scatopsidae	0	0	6	6	0,50%	2,0	3,5
	Formicidae	0	0	130	130	10,93%	43,3	75,1
	Chalcidoidea	1	0	1	2	0,17%	0,7	0,6
	Apis mellifera	0	0	2	2	0,17%	0,7	1,2
HYMENOPTERA	Vespa velutina	12	0	37	49	4,12%	16,3	18,9
	Vespa crabro	0	0	3	3	0,25%	1,0	1,7
	Vespula vulgaris	1	0	1	2	0,17%	0,7	0,6
	Vespula germanica	1	0	0	1	0,08%	0,3	0,6
	Polistes dominula	0	0	1	1	0,08%	0,3	0,6
	Staphilinidae	1	0	0	1	0,08%	0,3	0,6
COLEOPTERA	Elateridae	0	0	1	1	0,08%	0,3	0,6
	Cantharidae	0	0	3	3	0,25%	1,0	1,7
	Nitidulidae	3	0	5	8	0,67%	2,7	2,5
ARANEA	Gnaphosidae	1	0	0	1	0,08%	0,3	0,6
LEPIDOPTERA		0	0	24	24	2,02%	8,0	13,9
ACARIFORMES	Trombiculidae	0	0	1	1	0,08%	0,3	0,6
	Parasitidae	1	0	0	1	0,08%	0,3	0,6
BLATTODEA	Ectobiidae	1	0	0	1	0,08%	0,3	0,6
TOTAL		335	0	854	1189	100%	396,3	430,29
%TOTAL		28,17%	0,00%	71,83%				

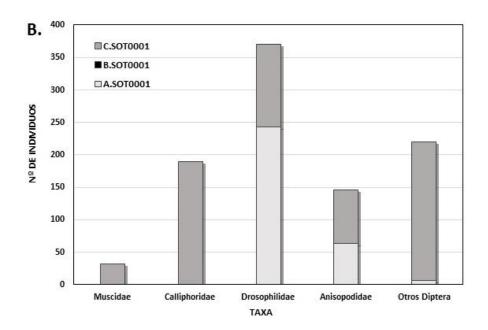
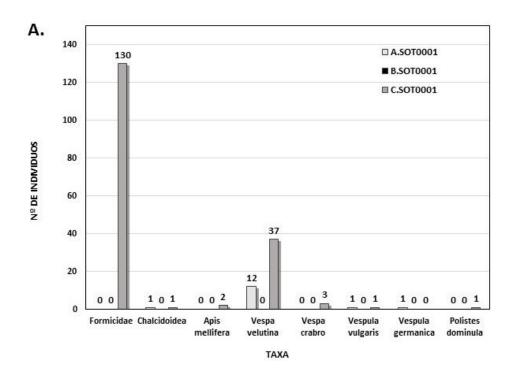


Figura 14. Número de individuos de los principales órdenes capturados en los diferentes muestreos realizados en la estación SOT0001 (A). Número total de individuos capturados de los principales órdenes de la estación SOT0001 (B).


Diptera: se detectaron un total de 958 individuos agrupados en 16 familias, donde aquellas con mayor abundancia de individuos resultaron ser la familia Drosophilidae, la familia Calliphoridae y la familia Anisopodidae, representando respectivamente el 31,12%, 15,98% y 12,28% del total de individuos capturados en la estación SOT0001 (Figura 15). Destaca la presencia de la especie invasora *Drosophila suzukii* (Familia Drosophilidae), representando el 14,97% de las capturas totales de la estación.

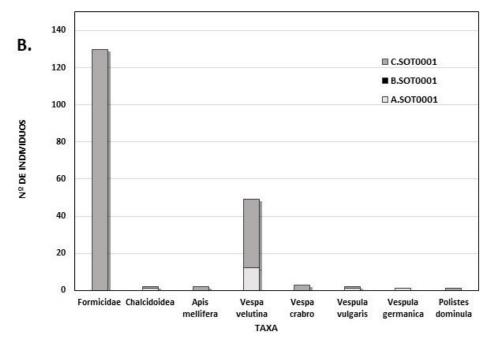


Figura 15. Número de individuos capturados del orden Diptera en los diferentes muestreos realizados en la estación SOT0001 (A). Número total de individuos capturados del orden Diptera en la estación SOT0001 (B).

Hymenoptera: se detectaron un total de 190 individuos agrupados en 8 taxones, donde aquel con mayor abundancia de individuos resultó ser la familia Formicidae, representando el 10,93% del total de individuos capturados en la estación (Figura 16). Destaca la presencia de la especie invasora *Vespa velutina* (Familia Vespidae), representando el 4,12% de las capturas totales de la estación.

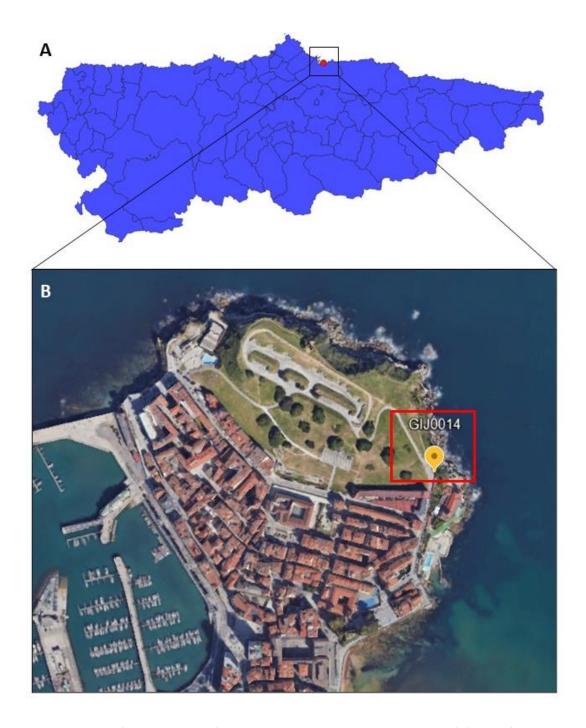


Figura 16. Número de individuos capturados del orden Hymenoptera en los diferentes muestreos realizados en la estación SOT0001 (A). Número total de individuos capturados del orden Hymenoptera en la estación SOT0001 (B).

Otros órdenes: se detectaron un total de 41 individuos de otros 5 grupos taxonómicos donde aquellos con mayor abundancia de individuos resultaron ser el Orden Lepidoptera y el Orden Coleoptera representando respectivamente el 2,02% y 1,09% del total de individuos capturados en la estación SOT0001 (Tabla 4).

1.1.4 **ESTACIÓN GIJ0014**

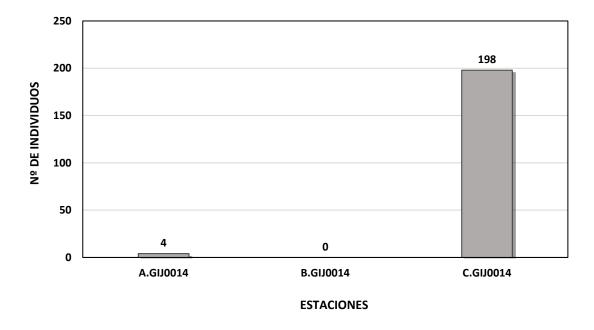
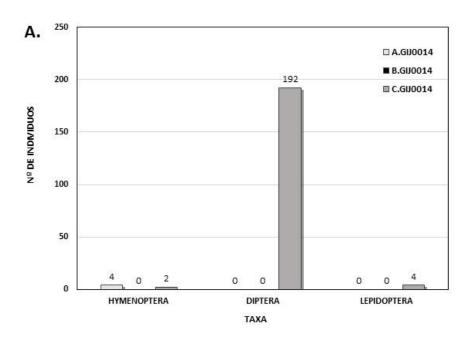

Situación geográfica: La estación GIJ0014 está situada en la ciudad de Gijón (43,54765433 N, -5,660311617 E), situada en el Cerro de Santa Catalina en el barrio de Cimadevilla (Figura 17).

Figura 17. Situación de la estación GIJ0014 en Principado de Asturias (A). Ortofoto de las cercanías de la estación GIJ0014 (B).

Ambiente: La trampa está situada en un ambiente urbano perteneciendo a una zona ajardinada donde teóricamente domina la asociación fitosociológica *Leucanthemo crassifoli-Festucetum pruinosae* caracterizado por un pastizal denso típico de acantilados del litoral cantábrico oriental (que se instala en las zonas más protegidas y generalmente detrás de las comunidades de la *Crithmo-Plantaginetum maritimae* y *Crithmo-Limonietum binervosi*, sobre suelos más o menos desarrollados. Constituyen la segunda cintura de vegetación de los acantilados y se caracteriza florísticamente por el dominio de *Festuca pruinosa* junto con *Daucus gummifer*, *Leucanthemum ircutiuanum* subsp. *crassifolium*, *Anthyllis vulneraria* subsp. *iberica*, *Plantago maritima*, *Rumex biformis*, etc. En los acantilados de calizas duras, sobre suelos ligeramente evolucionados y continuos, estas praderas incorporan *Armeria pubigera* subsp. *depilata* (subas. *Armerietosum depilatae* F. Prieto & Loidi 1984), mientras que, en los acantilados de sustratos menos consistentes e inestables, las praderas corresponden a la subas. tipica (*festucetosum pruinosae*) (Díaz-González, 2014; 2021).


Resultados: Se analizaron un total de 202 individuos, agrupados en tres órdenes del Filo Arthropoda, donde aquellos con mayor abundancia de individuos resultaron ser el Orden Diptera y el Orden Hymenoptera representando respectivamente el 95,05% y 2,97% del total de individuos capturados en la estación GIJ0014 (Figura 19; Tabla 5). El muestreo con mayor número de individuos atrapados fue el C.GIJ0014 con un total de 198 individuos, representando el 98,02% del total de las capturas (Figura 18).

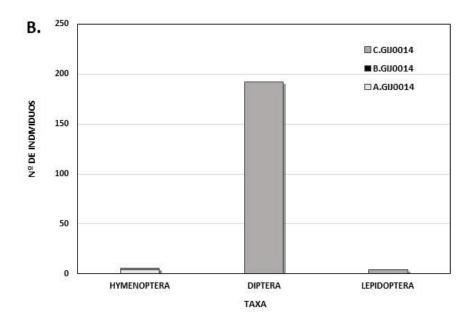
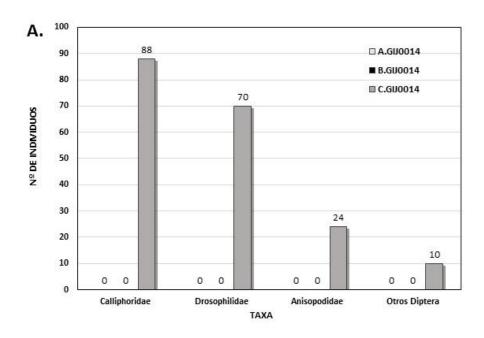


Figura 18. Número total de individuos capturados en los diferentes muestreos realizados en la estación GIJ0014.

Tabla 5. Resultados de la captura total en la estación GIJ0014 y en los tres muestreos analizados (A. GIJ0014; B. GIJ0014; C. GIJ0014). Se indica el número medio de individuos por trampa, desviación estándar (DS) y el porcentaje de individuos capturados sobre el número total de insectos atrapados en la estación GIJ0014. En rojo las especies invasoras detectadas.


Orden	Таха	A.GIJ0014	B.GIJ0014	C.GIJ0014	TOTAL	%TOTAL	MEDIA	SD
	Anthomyiidae	0	0	1	1	0.50%	0.3	0.6
	Aulacigastridae	0	0	7	7	3.47%	2.3	4.0
	Calliphoridae	0	0	88	88	43.56%	29.3	50.8
DIPTERA	Otros Drosophilidae	0	0	65	65	32.18%	21.7	37.5
	Drosophila suzukii	0	0	5	5	2.48%	1.7	2.9
	Anisopodidae	0	0	24	24	11.88%	8.0	13.9
	Sciaridae	0	0	1	1	0.50%	0.3	0.6
	Scatopsidae	0	0	1	1	0.50%	0.3	0.6
	Formicidae	2	0	0	2	0.99%	0.7	1.2
HYMENOPTERA	Chalcidoidea	0	0	2	2	0.99%	0.7	1.2
	Vespula germanica	1	0	0	1	0.50%	0.3	0.6
	Vespa velutina	1	0	0	1	0.50%	0.3	0.6
LEPIDOPTERA		0	0	4	4	1.98%	1.3	2.3
TOTAL		4	0	198	202	100%	67	113.18
%TOTAL		1.98%	0.00%	98.02%				

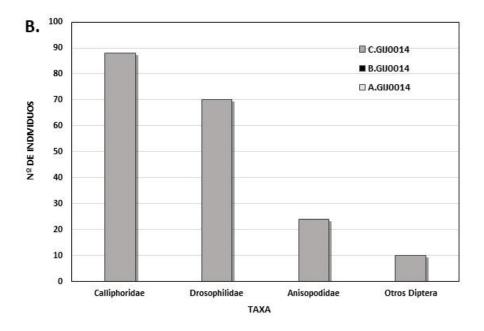
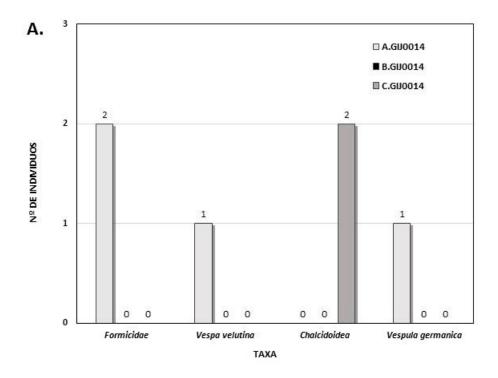


Figura 19. Número de individuos de los principales órdenes capturados en los diferentes muestreos realizados en la estación GIJ0014 (A). Número total de individuos capturados de los principales ordenes en la estación GIJ0014 (B).


Diptera: se detectaron un total de 192 individuos agrupados en siete familias, donde aquellas con mayor abundancia de individuos resultaron ser la familia Calliphoridae y la familia Drosophilidae representando respectivamente el 43,56% y 34,65% del total de individuos capturados en la estación GIJ0014 (Figura 20). Destaca la presencia de la especie invasora *Drosophila suzukii* (Familia Drosophilidae), representando el 2,48% de las capturas totales de la estación.

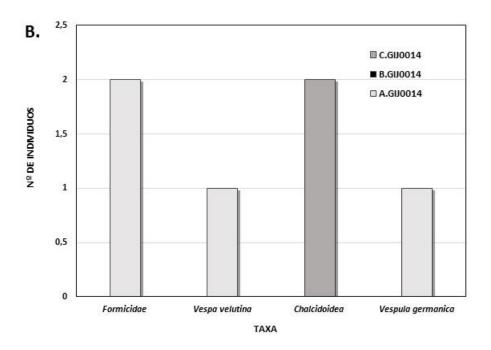


Figura 20. Número de individuos capturados del orden Diptera en los diferentes muestreos realizados en la estación GIJ0014 (A). Número total de individuos capturados del orden Diptera en la estación GIJ0014 (B).

Hymenoptera: se detectaron un total de seis individuos agrupados en 3 taxones, la familia Formicidae, la familia Vespidae y la superfamilia Chalcidoidea, representando cada una de ellas el 0,99% del total de individuos capturados en la estación GIJ0014 (Figura 21). Destaca la presencia de la especie invasora *Vespa velutina* (Familia Vespidae), representando el 0,50% de las capturas totales de la estación.

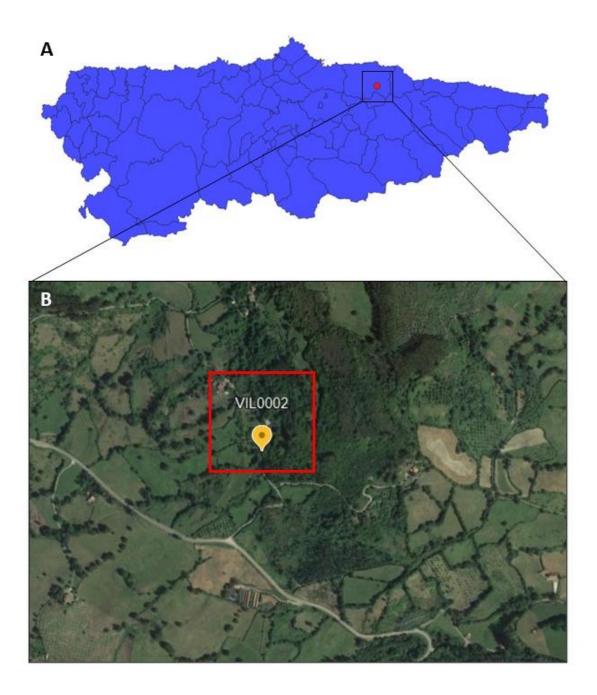


Figura 21. Número de individuos capturados del orden Hymenoptera en los diferentes muestreos realizados en la estación GIJ0014 (A). Número total de individuos capturados del orden Hymenoptera en la estación GIJ0014 (B).

Otros órdenes: se detectaron un total de cuatro individuos del Orden Lepidoptera representando el 1,98% del total de individuos capturados en la estación GIJ0014 (Tabla 5).

1.1.5 **ESTACIÓN VIL0002**

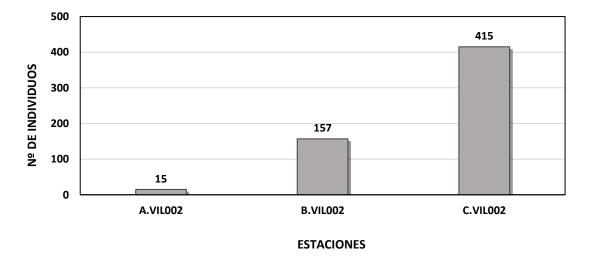
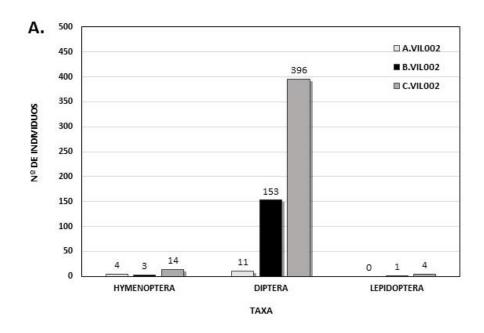

Situación geográfica: La estación VIL0002 está situada a 0,9 Km de la localidad de El Tisoriu (43,46241013 N, -5,408720411 E), ubicada a 2 Km de la capital del concejo, Villaviciosa (Villaviciosa). La población más cercana, además de El Tisoriu, es la localidad de Solares, situada a 1 km (Figura 22).

Figura 22. Situación de la estación VIL0002 en Principado de Asturias (A). Ortofoto de las cercanías de la estación VIL0002 (B).

Ambiente: La trampa está situada en un ambiente rural dominado por la asociación fitosociológica Polysticho setiferi-Fraxinetum excelsioris caracterizado por un estrato arbóreo constituido por carbayos (Quercus robur), fresnos comunes (Fraxinus excelsior) y castaños (Castanea sativa). En ocasiones llegan a dominar arces o pláganos (Acer pseudoplatanus), olmos de montaña (Ulmus glabra) y tilares blanquecinos (Tilia platyphyllos). Bajo el dosel arbóreo crecen arbustos como el cornejo (Cornus sanguinea), el avellano (Corylus avellana), escaramujos (Rosa sempervirens), el laurel (Laurus nobilis), endrinos (Prunus spinosa) acebos (Ilex aquifolium), artos (Rubus ulmifolius), espineras, espino blanco (Crataegus monogyna), ruscos (Ruscus aculeatus), aligustres (Liqustrum vulqare), y plantas como la hoja de pulmón (Pulmonaria longifolia), la primavera (Primula acaulis), la oreja de monte (Saxifraga hirsuta), la espadaña fétida (Iris foetidissima), el eléboro verde (Helleborus viridis subsp. occidentalis) y numerosos helechos (Polystichum setiferum, Phyllitis scolopendrium, Athyrium filix-femina, Dryopteris affinis, Dryopteris filix-mas, etc). Destacan las lianas y plantas trepadoras como la hiedra (Hedera helix), la nuez negra (Tamus communis), los raspalenguas (Rubia peregrina), las madreselvas (Lonicera periclymenum) y la hierba del pordiosero (Clematis vitalba) (Díaz-González, 2014; 2021).


Resultados: Se analizaron un total de 587 individuos, agrupados en cuatro órdenes del Filo Arthropoda, donde aquellos con mayor abundancia de individuos resultaron ser el Orden Diptera y el Orden Hymenoptera, representando respectivamente el 95,40% y 3,58% del total de individuos capturados en la estación VIL0002 (Figura 24; Tabla 6). El muestreo con mayor número de individuos atrapados fue el C.VIL0002 con un total de 415 individuos, representando el 70,70% del total de las capturas (Figura 23).

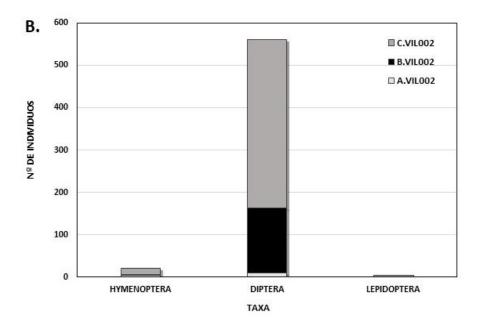
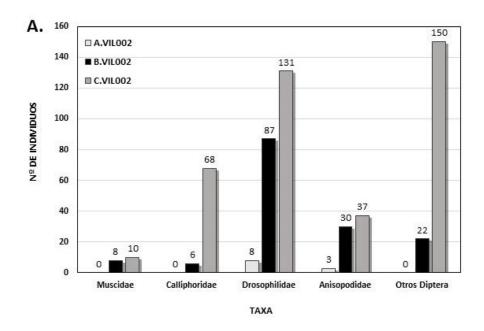


Figura 23. Número total de individuos capturados en los diferentes muestreos realizados en la estación VIL0002.

Tabla 6. Resultados de la captura total en la estación VIL0002 y en los tres muestreos analizados (A. VIL0002; B. VIL0002; C. VIL0002). Se indica el número medio de individuos por trampa, desviación estándar (DS) y el porcentaje de individuos capturados sobre el número total de insectos atrapados en la estación VIL0002. En rojo las especies invasoras detectadas.


Orden	Таха	A.VIL002	B.VIL002	C.VIL002	TOTAL	%TOTAL	MEDIA	SD
	Scatophagidae	0	7	5	12	2.04%	4.0	3.6
	Anthomyiidae	0	8	65	73	12.44%	24.3	35.4
	Muscidae	0	8	10	18	3.07%	6.0	5.3
	Fannidae	0	1	1	2	0.34%	0.7	0.6
	Calliphoridae	0	6	68	74	12.61%	24.7	37.6
	Dryomycidae	0	3	66	69	11.75%	23.0	37.3
	Syrphidae	0	0	1	1	0.17%	0.3	0.6
DIPTERA	Otros Drosophilidae	2	64	117	183	31.18%	61.0	57.6
	Drosophila suzukii	6	23	14	43	7.33%	14.3	8.5
	Aulacigastridae	0	0	6	6	1.02%	2.0	3.5
	Phoridae	0	0	1	1	0.17%	0.3	0.6
	Anisopodidae	3	30	37	70	11.93%	23.3	18.0
	Sciaridae	0	1	3	4	0.68%	1.3	1.5
	Scatopsidae	0	1	0	1	0.17%	0.3	0.6
	Chironomidae	0	1	0	1	0.17%	0.3	0.6
	Mycetophilidae	0	0	2	2	0.34%	0.7	1.2
	Chalcidoidea	0	2	4	6	1.02%	2.0	2.0
HYMENOPTERA	Dolichovespula media	1	0	0	1	0.17%	0.3	0.6
	Vespula vulgaris	3	0	1	4	0.68%	1.3	1.5
	Vespa velutina	0	1	9	10	1.70%	3.3	4.9
COLEOPTERA	Nitidulidae	0	0	1	1	0.17%	0.3	0.6
LEPIDOPTERA		0	1	4	5	0.85%	1.7	2.1
TOTAL		15	157	415	587	100%	195.7	202.78
%TOTAL		2.56%	26.75%	70.70%				

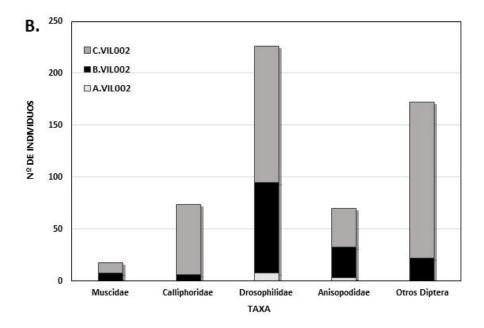
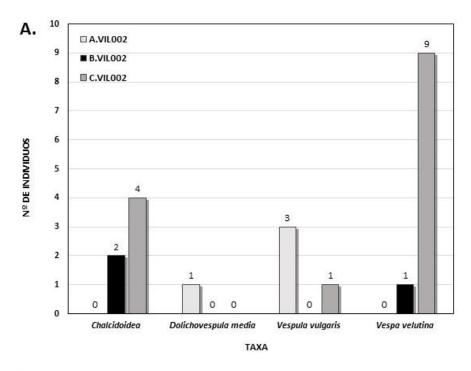


Figura 24. Número de individuos de los principales órdenes capturados en los diferentes muestreos realizados en la estación VIL0002 (A). Número total de individuos capturados en la estación VIL0002 (B).


Diptera: se detectaron un total de 560 individuos agrupados en 15 familias, donde aquellas con mayor abundancia de individuos resultaron ser la familia Drosophilidae, la familia Calliphoridae y la familia Antomyiidae, representando respectivamente el 38,50%, 12,61% y 12,44% del total de individuos capturados en la estación VIL0002 (Figura 25). Destaca la presencia de la especie invasora *Drosophila suzukii* (Familia Drosophilidae), representando el 7,33% de las capturas totales de la estación.

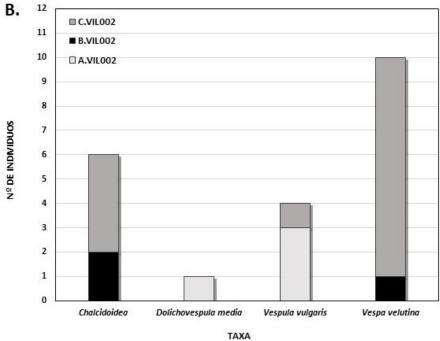


Figura 25. Número de individuos capturados del orden Diptera en los diferentes muestreos realizados en la estación VIL0002 (A). Número total de individuos capturados del orden Diptera en la estación VIL0002 (B).

Hymenoptera: se detectaron un total de 21 individuos de los cuales, diez de ellos correspondían a la especie invasora *Vespa velutina* (Familia Vespidae) representando el 1,70% de las capturas totales de la estación (Figura 26).

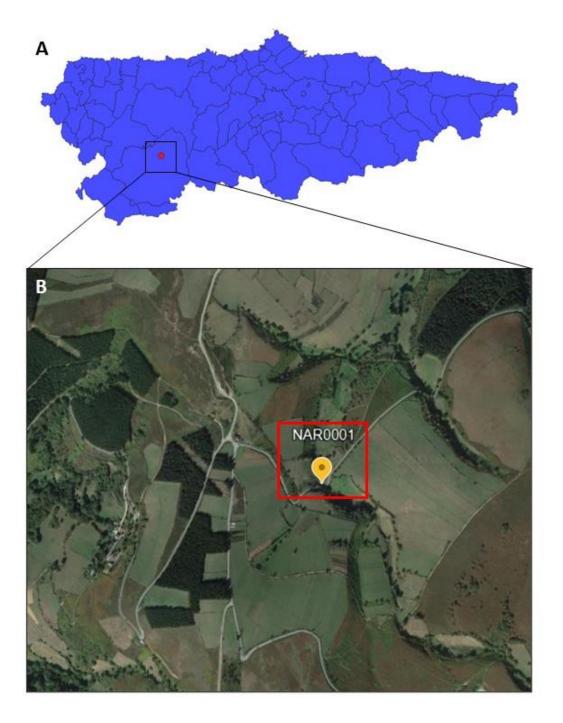


Figura 26. Número de individuos capturados del orden Hymenoptera en los diferentes muestreos realizados en la estación VIL0002 (A). Número total de individuos capturados del orden Hymenoptera en la estación VIL0002 (B).

Otros órdenes: se detectaron un total de seis individuos de otros dos grupos taxonómicos donde aquel con mayor abundancia de individuos resultó ser el Orden Lepidoptera, representando el 0,85% y el Orden Coleoptera representando el 0,17% del total de individuos capturados en la estación VIL0002 (Tabla 6).

1.1.6 ESTACIÓN NARO001

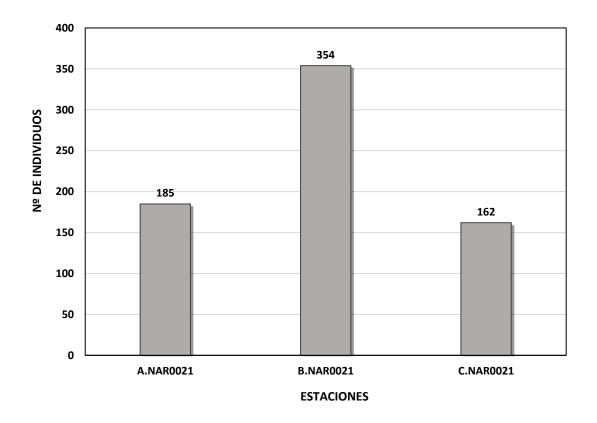
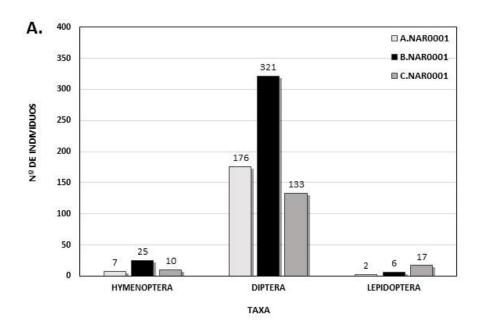

Situación geográfica: La estación NAR0001 está situada a 0,5 Km de la localidad de La Braña, (43,16550363 N, -6,510312371 E), ubicada a 3,2 Km de la capital del concejo, Cangas de Narcea (Cangas de Narcea). La población más cercana, además de La Braña, es la localidad de Villanueva de San Cristóbal, situada a 1 km (Figura 27).

Figura 27. Situación de la estación NAR0001 en Principado de Asturias (A). Ortofoto de las cercanías de la estación NAR0021 (B).

Ambiente: La trampa está situada en un ambiente rural dominado por la asociación fitosociológica *Linario triornithophorae-Quercetum pyrenaicae* caracterizado por un estrato arbóreo dominado por *Quercus pyrenaica*, si bien, en algunos casos, suele participar el roble albar (*Quercus petraea*) y sus híbridos. En el estrato de arbustos son frecuentes el arraclán (*Frangula alnus*) y el piruétano o peral silvestre (*Pyrus cordata*). Los rebollares raramente son densos ya que es un árbol que en los estadios juveniles exige bastante luz, proporcionando en estado adulto escasa cubierta, contribuyendo a la diversificación del estrato herbáceo, con especies como *Holcus mollis*, *Stellaria holostea*, *Physospermum cornubiensis*, *Avenella flexuosa*, *Teucrium scorodonia*, *Melampyrum pratense*, etc (Díaz-González, 2014; 2021).


Resultados: Se analizaron un total de 701 individuos, agrupados en cuatro órdenes del Filo Arthropoda, donde aquellos con mayor abundancia de individuos resultaron ser el Orden Diptera y el Orden Hymenoptera, representando respectivamente el 89,87% y 5,99% del total de individuos capturados en la estación NARO001 (Figura 29; Tabla 7). El muestreo con mayor número de individuos atrapados fue el B.NARO001 con un total de 354 individuos, representando el 50,50% del total de las capturas (Figura 28).

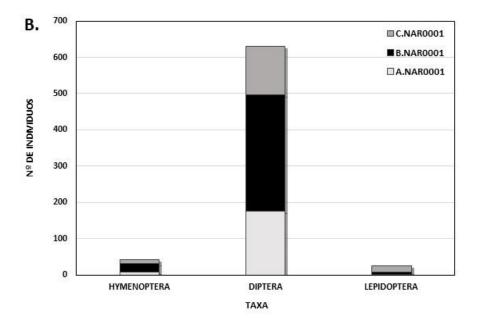
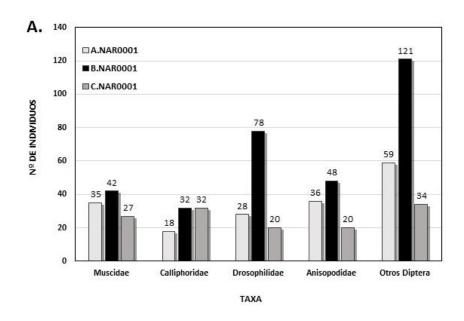


Figura 28. Número total de individuos capturados en los diferentes muestreos realizados en la estación NAR0001.

Tabla 7. Resultados de la captura total en la estación NAR001 y en los tres muestreos analizados (A. NAR0001; B. NAR0001; C. NAR0001). Se indica el número medio de individuos por trampa, desviación estándar (DS) y el porcentaje de individuos capturados sobre el número total de insectos atrapados en la estación NAR0001. En rojo las especies invasoras detectadas.


Orden	Таха	A.NAR0001	B.NAR0001	C.NAR0001	TOTAL	%TOTAL	MEDIA	SD
	Scatophagidae	20	19	15	54	7.70%	18.0	2.6
	Anthomyiidae	27	81	8	116	16.55%	38.7	37.9
	Muscidae	35	42	27	104	14.84%	34.7	7.5
	Fannidae	0	1	0	1	0.14%	0.3	0.6
	Calliphoridae	18	32	32	82	11.70%	27.3	8.1
	Sarcophagidae	0	1	0	1	0.14%	0.3	0.6
	Dryomycidae	3	12	10	25	3.57%	8.3	4.7
DIPTERA	Syrphidae	1	2	0	3	0.43%	1.0	1.0
	Aulacigastridae	0	4	1	5	0.71%	1.7	2.1
	Otros Drosophilidae	27	75	20	122	17.40%	40.7	29.9
	Drosophila suzukii	1	3	0	4	0.57%	1.3	1.5
	Anisopodidae	36	48	20	104	14.84%	34.7	14.0
	Sciaridae	7	0	0	7	1.00%	2.3	4.0
	Mycetophilidae	0	1	0	1	0.14%	0.3	0.6
	Simulidae	1	0	0	1	0.14%	0.3	0.6
	Formicidae	5	20	8	33	4.71%	11.0	7.9
	Chalcidoidea	1	1	0	2	0.29%	0.7	0.6
HYMENOPTERA	Tenthredinidae	0	1	0	1	0.14%	0.3	0.6
	Vespa velutina	0	2	1	3	0.43%	1.0	1.0
	Vespula germanica	1	1	1	3	0.43%	1.0	0.0
COLEOPTERA	Staphilinidae	0	1	0	1	0.14%	0.3	0.6
	Nitidulidae	0	1	2	3	0.43%	1.0	1.0
LEPIDOPTERA		2	6	17	25	3.57%	8.3	7.8
TOTAL		185	354	162	701	100%	233.7	104.84
%TOTAL		26.39%	50.50%	23.11%				

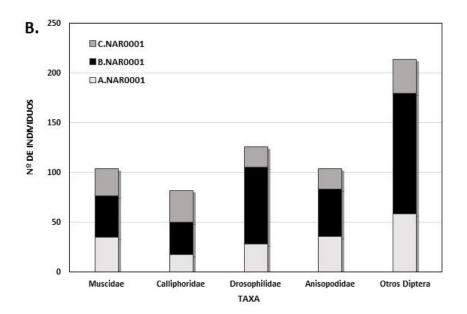
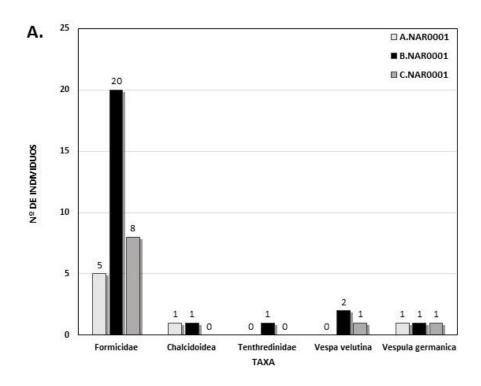


Figura 29. Número de individuos de los principales órdenes capturados en los diferentes muestreos realizados en la estación NARO001 (A). Número total de individuos capturados de los principales órdenes en la estación NARO001 (B).


Diptera: se detectaron un total de 630 individuos agrupados en 14 familias, donde aquellas con mayor abundancia de individuos resultaron ser la familia Drosophilidae, y la familia Antomyiidae, representando respectivamente el 17,97% y 16,55% del total de individuos capturados en la estación NAR0001 (Figura 30). Destaca la presencia de la especie invasora *Drosophila suzukii* (Familia Drosophilidae), representando el 0,57% de las capturas totales de la estación.

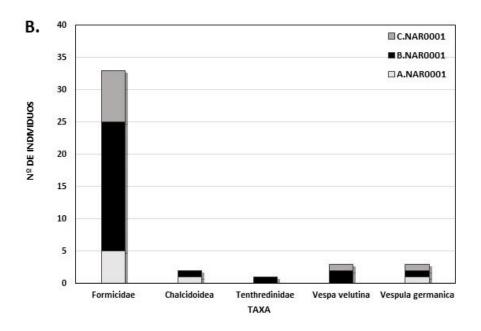


Figura 30. Número de individuos capturados del orden Diptera en los diferentes muestreos realizados en la estación NAR0001 (A). Número total de individuos capturados del orden Diptera en la estación NAR0001 (B).

Hymenoptera: se detectaron un total de 42 individuos agrupados en cuatro taxones, la familia Formicidae, la familia Vespidae, la superfamilia Chalcidoidea y la familia Tenthredinidae, representando respectivamente el 4,71%, 0,86% y 0,29% y 0,14% del total de individuos capturados en la estación NAR0001 (Figura 31). Destaca la presencia de la especie invasora *Vespa velutina* (Familia Vespidae), representando el 0,43% de las capturas totales de la estación.

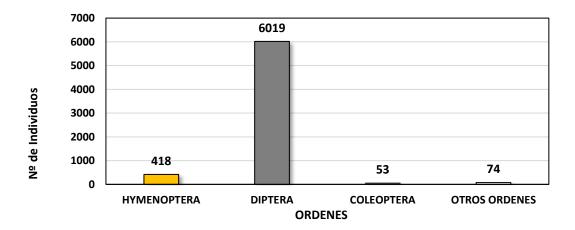


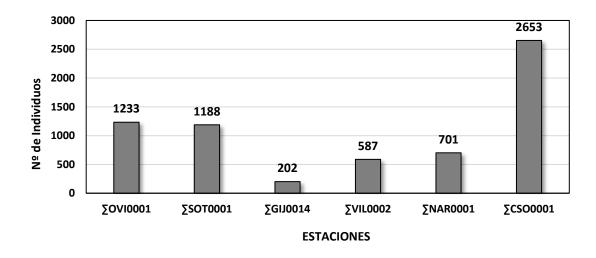
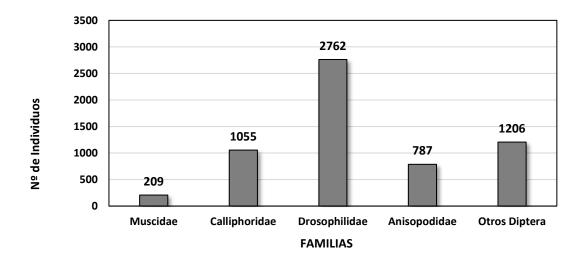
Figura 31. Número de individuos capturados del orden Hymenoptera en los diferentes muestreos realizados en la estación NAR0001 (A). Número total de individuos capturados del orden Hymenoptera en la estación NAR0001 (B).

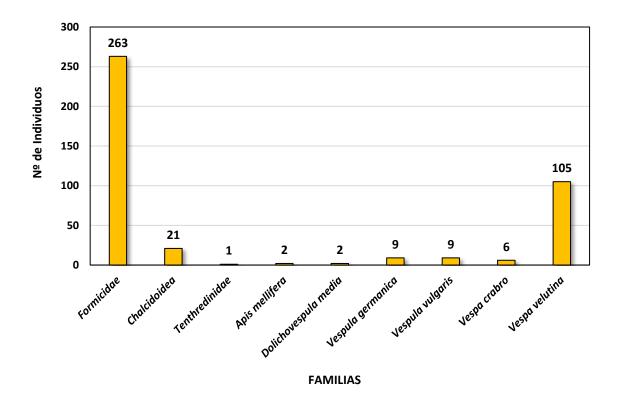
Otros órdenes: se detectaron un total de 29 individuos de otros dos grupos taxonómicos, 25 individuos del Orden Lepidoptera, representando el 3,57% del total y cuatro individuos del Orden Coleoptera, representando el 0,57% del total de individuos capturados en la estación NAR0001 (Tabla 7).

1.2 ANÁLISIS CONJUNTO DE LAS ESTACIONES

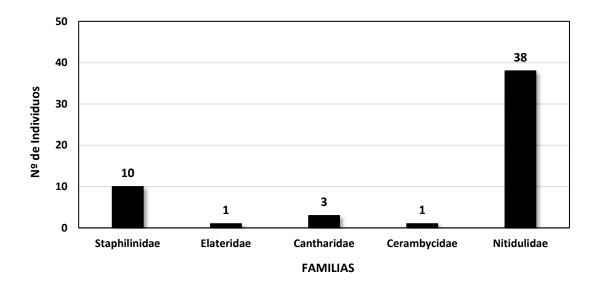
Resultados: Se analizaron un total de 6564 individuos, agrupados en 7 órdenes/superórdenes del Filo Arthropoda, donde aquellos con mayor abundancia de individuos resultaron ser el Orden Diptera y el Orden Hymenoptera, representando respectivamente el 91,697% y 6,368% del total de individuos capturados (Tabla 8; Figura 32). La estación con el mayor número de individuos atrapados fue la estación CSO0001 con un total de 2653 individuos, representando el 40,42% del total de las capturas (Figura 33).

Figura 32. Número total de individuos de los principales órdenes capturados en las diferentes estaciones muestreadas en la campaña 2023.

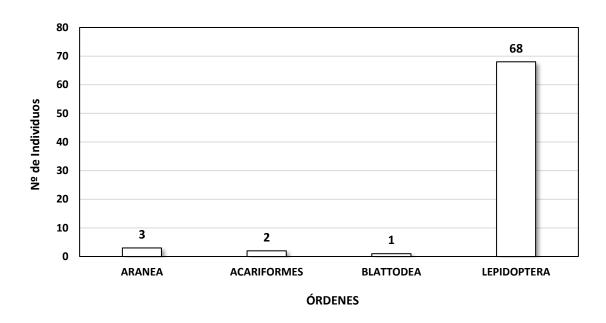




Figura 33. Número total de individuos capturados en las diferentes estaciones analizadas.

Diptera: se detectaron un total de 6019 individuos agrupados en 20 familias, donde aquellas con mayor abundancia de individuos resultaron ser la familia Drosophilidae, la familia Calliphoridae y la familia Anisopodidae, representando respectivamente el 42,078%, 16,073% y 11,991% del total de individuos capturados (Figura 34). Destaca la presencia de la especie invasora *Drosophila suzukii* (Familia Drosophilidae), representando el 4,921% de las capturas totales.


Figura 34. Número total de individuos de las principales familias del orden Diptera capturados en las diferentes estaciones muestreadas en la campaña 2023.

Hymenoptera: se detectaron un total de 418 individuos agrupados en 9 taxones, donde aquel con mayor abundancia de individuos resultó ser la familia Formicidae, representando el 4,007% del total de individuos capturados (Figura 35). Destaca la presencia de la especie invasora *Vespa velutina* (Familia Vespidae), representando el 1,600% de las capturas totales.


Figura 35. Número total de individuos de las principales familias del orden Hymenoptera capturados en las diferentes estaciones muestreadas en la campaña 2023.

Coleoptera: se detectaron un total de 53 individuos agrupados en 5 familias, donde aquellas con mayor abundancia de individuos resultaron ser la familia Nitidulidae y la familia Staphilinidae, representando respectivamente el 0,579% y 0,152% del total de individuos capturados (Figura 36).

Figura 36. Número total de individuos de las principales familias del orden Coleoptera capturados en las diferentes estaciones muestreadas en la campaña 2023.

Otros órdenes: se detectaron un total de 74 individuos de otros 4 grupos taxonómicos donde aquel con mayor abundancia de individuos resultó ser el Orden Lepidoptera, representando el 1,036% del total de individuos capturados (Figura 37).

Figura 37. Número total de individuos de los órdenes minoritarios capturados en las diferentes estaciones muestreadas en la campaña 2023.

Tabla 8. Resultados de la captura total de individuos de las diferentes estaciones muestreadas. Se indica el sumatorio de los tres muestreos realizados en cada estación (Σ), así como el número medio de individuos, desviación estándar (DS) y el porcentaje de individuos capturados sobre el número total de insectos. En rojo las especies invasoras detectadas.

Orden	Таха	ΣΟVI0001	∑SOT0001	∑GIJ0014	ΣVIL0002	∑NAR0001	ΣCSO0001	TOTAL	%TOTAL	MEDIA	DS
	Scatophagidae	41	8	0	12	54	13	128	1,950%	21,33	21,18
	Anthomyiidae	53	75	1	73	116	141	459	6,993%	76,50	48,96
	Muscidae	26	32	0	18	104	29	209	3,184%	34,83	35,78
	Fannidae	11	13	0	2	1	9	36	0,548%	6,00	5,66
	Sarcophagidae	3	9	0	0	1	1	14	0,213%	2,33	3,44
	Calliphoridae	321	190	88	74	82	300	1055	16,073%	175,83	112,77
	Dryomycidae	9	19	0	69	25	16	138	2,102%	23,00	24,12
	Syrphidae	3	0	0	1	3	3	10	0,152%	1,67	1,51
	Otitidae	0	3	0	0	0	0	3	0,046%	0,50	1,22
	Aulacigastridae	67	30	7	6	5	171	286	4,357%	47,67	64,97
DIPTERA	Ulididae	0	1	0	0	0	0	1	0,015%	0,17	0,41
	Phoridae	1	0	0	1	0	0	2	0,030%	0,33	0,52
	Otros Drosophilidae	396	192	65	183	122	1481	2439	37,157%	406,50	538,18
	Drosophila suzukii	77	178	5	43	4	16	323	4,921%	53,83	66,89
	Anisopodidae	109	146	24	70	104	334	787	11,990%	131,17	107,53
	Sciaridae	14	50	1	4	7	4	80	1,219%	13,33	18,50
	Scatopsidae	0	6	1	1	0	24	32	0,488%	5,33	9,42
	Simulidae	0	0	0	0	1	0	1	0,015%	0,17	0,41
	Chironomidae	0	0	0	1	0	0	1	0,015%	0,17	0,41
	Cecidomyiidae	4	1	0	0	0	0	5	0,076%	0,83	1,60
	Mycetophilidae	0	5	0	2	1	2	10	0,152%	1,67	1,86

Tabla 8. Continuación.

Orden	Таха	ΣΟVI0001	∑SOT0001	∑GIJ0014	∑VIL0002	∑NAR0001	∑CSO0001	TOTAL	%TOTAL	MEDIA	DS
	Formicidae	46	130	2	0	33	52	263	4,007%	43,83	47,51
	Chalcidoidea	6	2	2	6	2	3	21	0,320%	3,50	1,97
	Tenthredinidae	0	0	0	0	1	0	1	0,015%	0,17	0,41
	Apis mellifera	0	2	0	0	0	0	2	0,030%	0,33	0,82
HYMENOPTERA	Dolichovespula media	0	0	0	1	0	1	2	0,030%	0,33	0,52
	Vespula germanica	4	1	1	0	3	0	9	0,137%	1,50	1,64
	Vespula vulgaris	3	2	0	4	0	0	9	0,137%	1,50	1,76
	Vespa crabro	0	3	0	0	0	3	6	0,091%	1,00	1,55
	Vespa velutina	20	49	1	10	3	22	105	1,600%	17,50	17,65
	Staphilinidae	2	1	0	0	1	6	10	0,152%	1,67	2,25
	Elateridae	0	1	0	0	0	0	1	0,015%	0,17	0,41
COLEOPTERA	Cantharidae	0	3	0	0	0	0	3	0,046%	0,50	1,22
	Cerambycidae	0	0	0	0	0	1	1	0,015%	0,17	0,41
	Nitidulidae	5	8	0	1	3	21	38	0,579%	6,33	7,74
ARANEA		2	1	0	0	0	0	3	0,046%	0,50	0,84
ACARIFORMES		0	2	0	0	0	0	2	0,030%	0,33	0,82
BLATTODEA		0	1	0	0	0	0	1	0,015%	0,17	0,41
LEPIDOPTERA		10	24	4	5	25	0	68	1,036%	11,33	10,69
TOTAL		1233	1188	202	587	701	2653	6564	100%	1094,00	856,25
%TOTAL		18,78%	18,10%	3,08%	8,94%	10,68%	40,42%				

1.3 ANÁLISIS COMPARATIVO CAMPAÑAS 2021-2023

1.3.1 **ESTACIÓN CSO0001**

Resultados: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una menor abundancia en todos los órdenes durante la campaña 2023. En cuanto a la diversidad de órdenes, la campaña 2023 presentó una menor diversidad (3 órdenes) en comparación con la campaña 2022 (8 órdenes) (Tabla 9; Figura 38).

Diptera: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una menor abundancia en todas las familias durante la campaña 2023. En cuanto a la diversidad de familias, la campaña 2023 presentó menor diversidad (7 familias) en comparación con la campaña 2022 (15 familias) (Tabla 9; Figura 39).

Hymenoptera: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una menor abundancia en todas las familias/superfamilias durante la campaña 2023. En cuanto a la diversidad de familias/superfamilias, la campaña 2023 presentó la misma diversidad (4 familias/superfamilias) que la campaña 2022 (Tabla 9; Figura 40).

Coleoptera: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una menor abundancia de todas las familias durante la campaña 2023. En cuanto a la diversidad de familias, la campaña 2023 presentó menor diversidad (0 familias) en comparación con la campaña 2022 (6 familias) (Tabla 9; Figura 41).

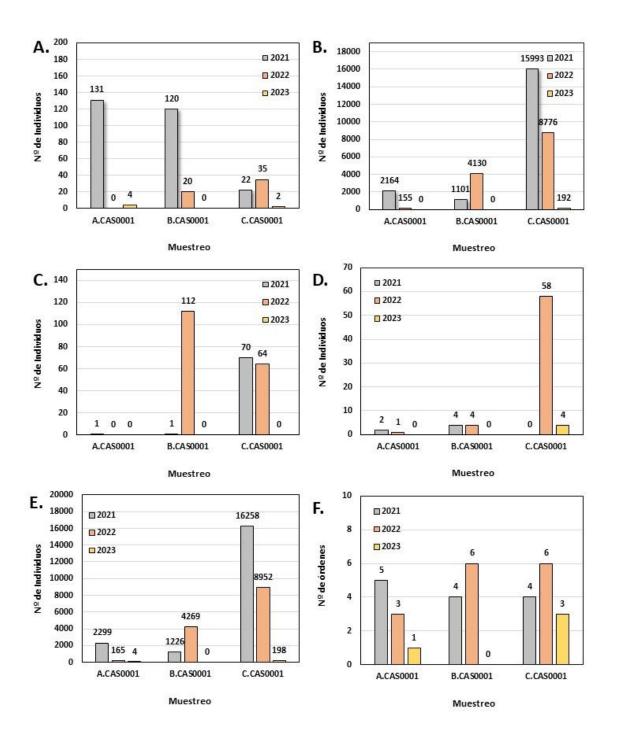

Especies invasoras: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en la especie *Vespa velutina* durante la campaña 2023. En cuanto a la diversidad de especies invasoras, la campaña 2023 presentó el mismo número de especies invasoras que la campaña 2022 (2 especies) (Tabla 9; Figura 42).

Tabla 9. Resumen de las capturas realizadas de los principales grupos estudiados durante las campañas 2021, 2022 y 2023 en la estación CSO0001. Se indica el sumatorio de los tres muestreos realizados en cada campaña (Σ). En rojo las especies invasoras detectadas.

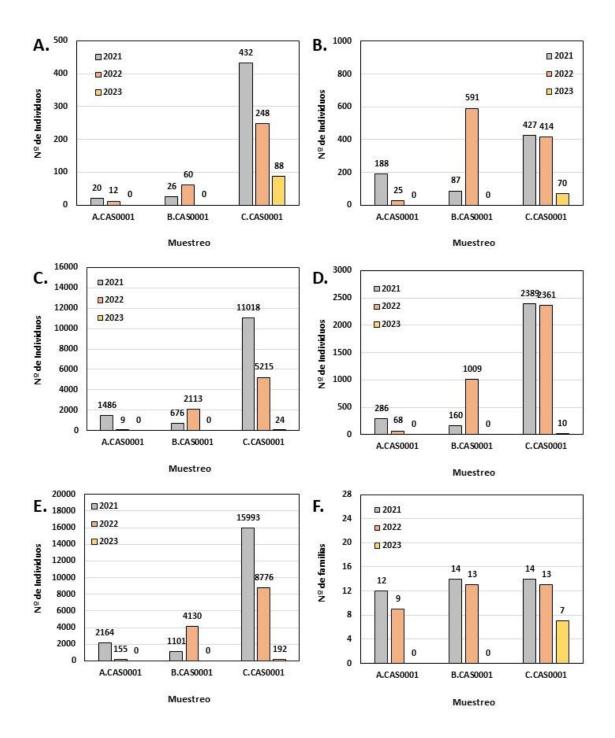
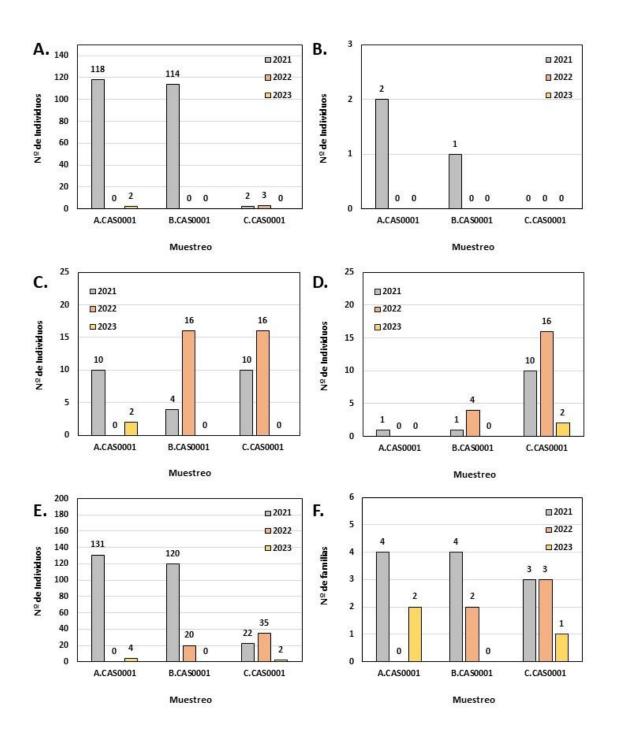
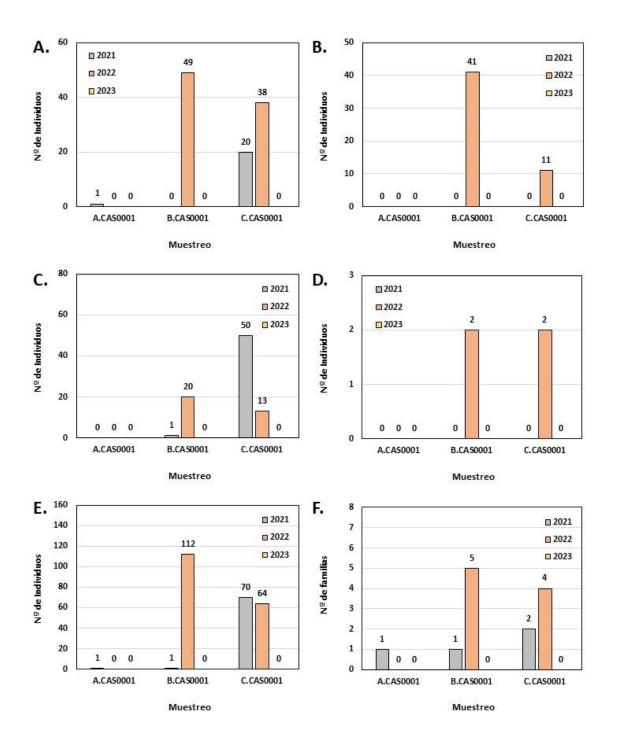

		202:	1			2022	2		2023				
TAXA	A.CAS2021	B.CAS2021	C.CAS2021	∑2021	A.CAS2022	B.CAS2022	C.CAS2022	∑2022	A.CAS2023	B.CAS2023	C.CAS2023	∑2023	
Hymenoptera	131	120	22	273	0	20	35	55	4	0	2	6	
Diptera	2164	1101	15993	19258	155	4130	8776	13061	0	0	192	192	
Coleoptera	1	1	70	72	0	112	64	176	0	0	0	0	
Lepidoptera	2	4	0	6	1	4	58	63	0	0	4	4	
Otros órdenes	1	1	173	175	9	3	19	31	0	0	0	0	
Nº de Individuos	2299	1226	16258	19783	165	4269	8952	13386	4	0	198	202	
Nº de órdenes	5	4	4	6	3	6	6	8	1	0	3	3	
					DIF	TERA							
Muscidae	20	26	432	478	12	60	248	320	0	0	88	88	
Calliphoridae	188	87	427	702	25	591	414	1030	0	0	70	70	
Drosophilidae	1486	676	11018	13180	9	2113	5215	7337	0	0	24	24	
Anisopodidae	286	160	2389	2835	68	1009	2361	3438	0	0	10	10	
Otros Diptera	184	152	1727	2063	41	357	538	936	0	0	10	10	
Nº de Individuos	2164	1101	15993	19258	155	4130	8776	13061	0	0	192	192	
Nº de familias	12	14	14	15	9	13	13	15	0	0	7	7	
					HYMEI	NOPTERA							
Formicidae	118	114	2	234	0	0	3	3	2	0	0	2	
Apidae	2	1	0	3	0	0	0	0	0	0	0	0	
Vespidae	10	4	10	24	0	16	16	32	2	0	0	2	
Chalcidoidea	1	1	10	12	0	4	16	20	0	0	2	2	
Nº de Individuos	131	120	22	273	0	20	35	55	4	0	2	6	
Nº de familias	4	4	3	4	0	2	3	3	2	0	1	3	

Tabla 9. Continuación.


TAVA		202:	1		2022				2023			
TAXA	A.CAS2021	B.CAS2021	C.CAS2021	∑2021	A.CAS2022	B.CAS2022	C.CAS2022	∑2022	A.CAS2023	B.CAS2023	C.CAS2023	∑2023
					COLEOPT	ERA						
Staphilinidae	1	0	20	21	0	49	38	87	0	0	0	0
Dermestidae	0	0	0	0	0	41	11	52	0	0	0	0
Nitidulidae	0	1	50	51	0	20	13	33	0	0	0	0
Otros Coleoptera	0	0	0	0	0	2	2	4	0	0	0	0
Nº de Individuos	1	1	70	72	0	112	64	176	0	0	0	0
Nº de familias	1	1	2	2	0	5	4	6	0	0	0	0
				E	SPECIES INV	ASORAS						
Drosophila suzukii	0	54	0	54	0	18	4	22	0	0	5	5
Dryocosmus kuriphilus	0	0	0	0	0	4	14	18	0	0	0	0
Torymus sinensis	0	0	0	0	0	0	0	0	0	0	0	0
Vespa velutina	3	3	3	9	0	0	0	0	1	0	0	1
Nº de Individuos	3	57	3	63	0	22	18	40	1	0	5	6
Nº de Especies	1	2	1	2	0	2	2	2	1	0	1	2


Figura 38. Resumen de las capturas realizadas del orden Hymenoptera (A), Diptera (B), Coleoptera (C) y Lepidoptera (D), así como el número total de individuos (E) y el número de órdenes estudiados (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación CSO0001.

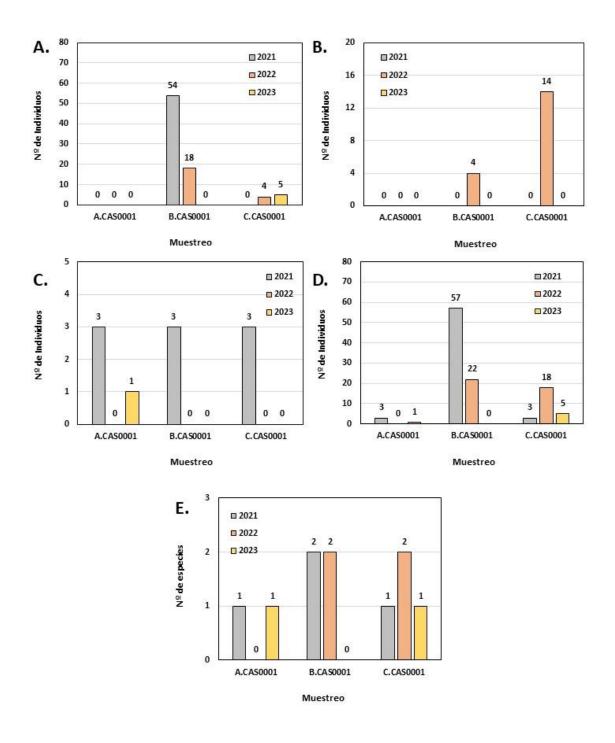

Figura 39. Resumen de las capturas realizadas de las familias Muscidae (A), Calliphoridae (B), Drosophilidae (C) y Anisopodidae (D), así como el número total de individuos (E) y el número de familias estudiadas (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación CSO0001.

Figura 40. Resumen de las capturas realizadas de las familias Formicidae (A), Apidae (B), Vespidae (C) y la superfamilia Chalcidoidea (D), así como el número total de individuos (E) y el número de familias/superfamilias estudiadas (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación CSO0001.

Figura 41. Resumen de las capturas realizadas de las familias Staphilinidae (A), Dermestidae (B), Nitidulidae (C) y otras familias (D), así como el número total de individuos (E) y el número de familias estudiadas (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación CSO0001.

Figura 42. Resumen de las capturas realizadas de las especies invasoras *Drosophila suzukii* (A), *Dryocosmus kuriphilus* (B), y *Vespa velutina* (C), así como el número total de individuos (D) y el número de Especies estudiadas (E) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación CSO0001.

1.3.2 **ESTACIÓN OVI0007**

Resultados: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una menor abundancia de todos los órdenes durante la campaña 2023. En cuanto a la diversidad de órdenes, la campaña 2023 presentó la misma diversidad (5 órdenes) que la campaña 2022 (Tabla 10; Figura 43).

Diptera: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una menor abundancia de todas las familias durante la campaña 2023. En cuanto a la diversidad de familias, la campaña 2023 presentó mayor diversidad (15 familias) en comparación con la campaña 2022 (14 familias) (Tabla 10; Figura 44).

Hymenoptera: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una menor abundancia en todas las familias durante la campaña 2023. En cuanto a la diversidad de familias/superfamilias, la campaña 2023 presentó la misma diversidad (4 familias/superfamilias) que la campaña 2023 (Tabla 10; Figura 45).

Coleoptera: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en la familia Staphilinidae durante la campaña 2022. En cuanto a la diversidad de familias, la campaña 2023 presentó el mismo número de familias que la campaña 2022 (2 familias) (Tabla 10; Figura 46).

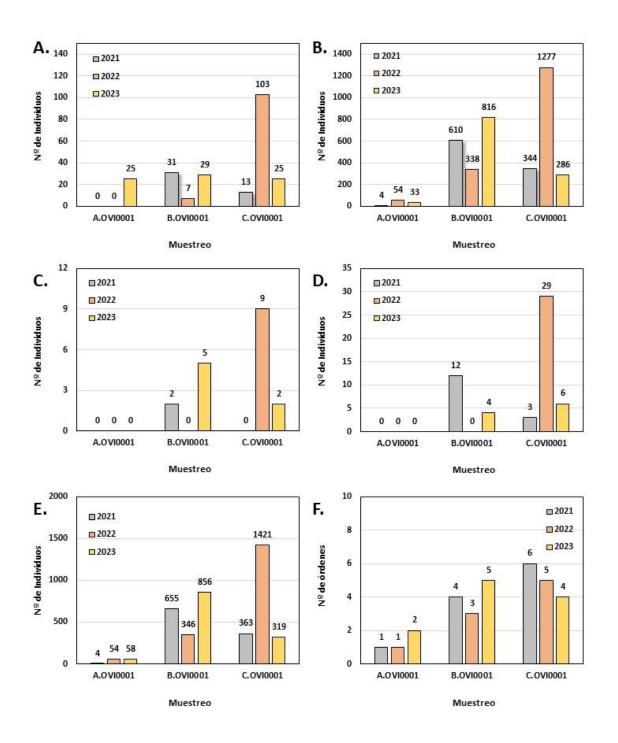

Especies invasoras: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en las especies *Drosophila suzukii* durante la campaña 2023, mientras que la especie *Vespa velutina* presentó mayor abundancia durante la campaña 2022. En cuanto a la diversidad de especies invasoras, la campaña 2023 presentó menor diversidad (3 especies) en comparación con la campaña 2022 (2 especies) (Tabla 10; Figura 47)

Tabla 10. Resumen de las capturas realizadas de los principales grupos estudiados durante las campañas 2021, 2022 y 2023 en la estación OVI0001. Se indica el sumatorio de los tres muestreos realizados en cada campaña (Σ). En rojo las especies invasoras detectadas.

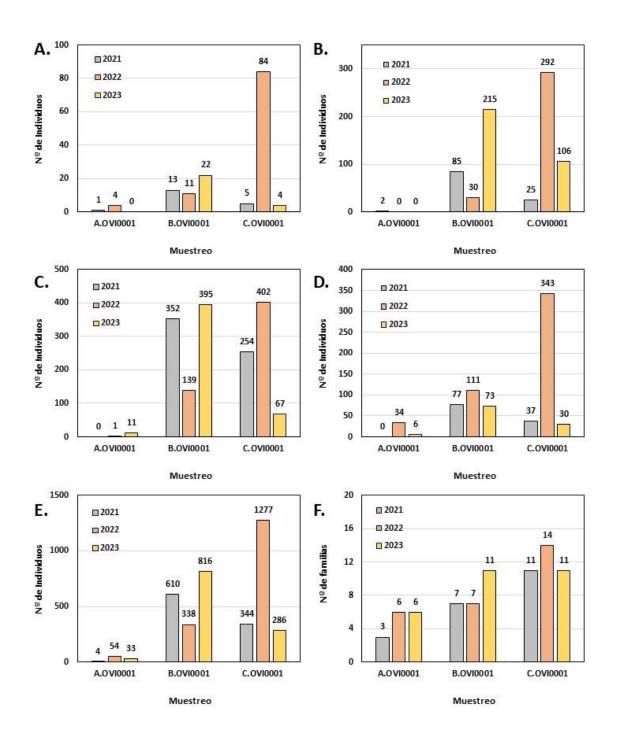
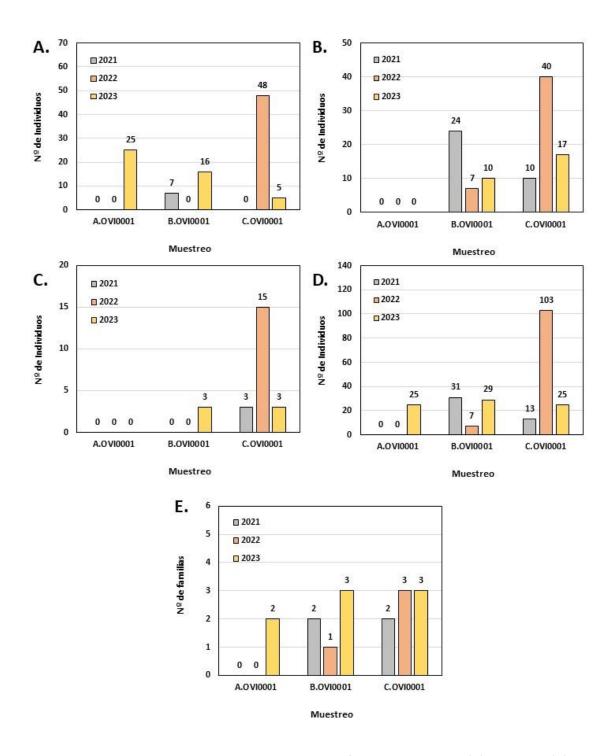
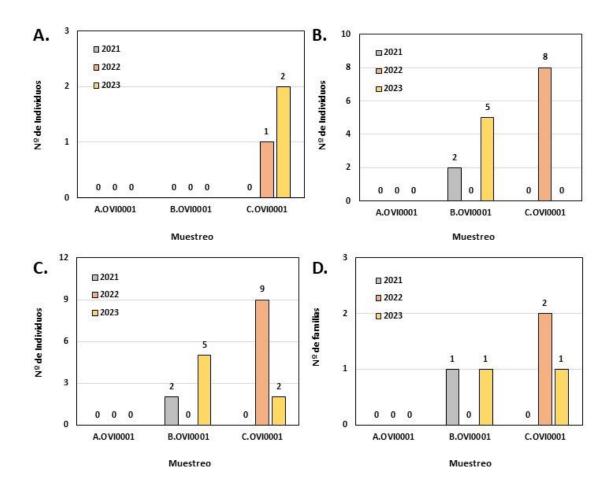

	2021					2022	2		2023				
TAXA	A.OVI2021	B.OVI2021	C.OVI2021	Σ2021	A.OVI2022	B.OVI2022	C.OVI2022	Σ2022	A.OVI2023	B.OVI2023	C.OVI2023	∑2023	
Hymenoptera	0	31	13	44	0	7	103	110	25	29	25	79	
Diptera	4	610	344	958	54	338	1277	1669	33	816	286	1135	
Coleoptera	0	2	0	2	0	0	9	9	0	5	2	7	
Lepidoptera	0	12	3	15	0	0	29	29	0	4	6	10	
Otros órdenes	0	0	3	3	0	1	3	4	0	2	0	2	
Nº de Individuos	4	655	363	1022	54	346	1421	1821	58	856	319	1233	
Nº de órdenes	1	4	6	7	1	3	5	5	2	5	4	5	
					DIF	PTERA							
Muscidae	1	13	5	19	4	11	84	99	0	22	4	26	
Calliphoridae	2	85	25	112	0	30	292	322	0	215	106	321	
Drosophilidae	0	352	254	606	1	139	402	542	11	395	67	473	
Anisopodidae	0	77	37	114	34	111	343	488	6	73	30	109	
Otros Diptera	1	83	23	107	15	47	156	218	16	111	79	206	
Nº de Individuos	4	610	344	958	54	338	1277	1669	33	816	286	1135	
Nº de familias	3	7	11	12	6	7	14	14	6	11	11	15	
					HYMEI	NOPTERA							
Formicidae	0	7	0	7	0	0	48	48	25	16	5	46	
Apidae	0	0	0	0	0	0	0	0	0	0	0	0	
Vespidae	0	24	10	34	0	7	40	47	0	10	17	27	
Chalcidoidea	0	0	3	3	0	0	15	15	0	3	3	6	
Nº de Individuos	0	0	0	0	0	0	0	0	0	0	0	0	
Nº de familias	0	31	13	44	0	7	103	110	25	29	25	79	

Tabla 10. Continuación.


TAVA		202	1			202	2		2023				
TAXA	A.OVI2021	B.OVI2021	C.OVI2021	∑2021	A.OVI2022	B.OVI2022	C.OVI2022	∑2022	A.OVI2023	B.OVI2023	C.OVI2023	∑2023	
					COLEOPT	COLEOPTERA							
Staphilinidae	0	0	0	0	0	0	1	1	0	0	2	2	
Dermestidae	0	0	0	0	0	0	0	0	0	0	0	0	
Nitidulidae	0	2	0	2	0	0	8	8	0	5	0	5	
Otros Coleoptera	0	0	0	0	0	0	0	0	0	0	0	0	
Nº de Individuos	0	2	0	2	0	0	9	9	0	5	2	7	
Nº de familias	0	1	0	1	0	0	2	2	0	1	1	2	
				E	SPECIES INV	ASORAS							
Drosophila suzukii	0	18	6	24	0	0	13	13	0	60	17	77	
Dryocosmus kuriphilus	0	0	0	0	0	0	13	13	0	0	0	0	
Torymus sinensis	0	0	0	0	0	0	0	0	0	0	0	0	
Vespa velutina	0	20	10	30	0	1	33	34	0	7	13	20	
Nº de Individuos	0	38	16	54	0	1	59	60	0	67	30	97	
Nº de Especies	0	2	2	2	0	1	3	3	0	2	2	2	


Figura 43. Resumen de las capturas realizadas del orden Hymenoptera (A), Diptera (B), Coleoptera (C) y Lepidoptera (D), así como el número total de individuos (E) y el número de órdenes estudiados (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación OVI0001.

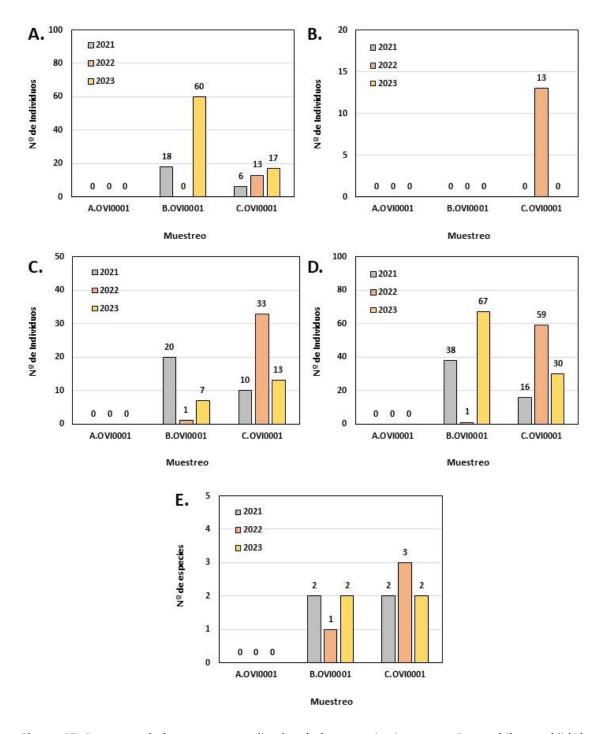

Figura 44. Resumen de las capturas realizadas de las familias Muscidae (A), Calliphoridae (B), Drosophilidae (C) y Anisopodidae (D), así como el número total de individuos (E) y el número de familias estudiadas (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación OVI0001.

Figura 45. Resumen de las capturas realizadas de las familias Formicidae (A), Vespidae (B) y la superfamilia Chalcidoidea (C), así como el número total de individuos (D) y el número de familias/superfamilias estudiadas (E) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación OVI0001.

Figura 46. Resumen de las capturas realizadas de las familias Staphilinidae (A) y Nitidulidae (B), así como el número total de individuos (E) y el número de familias estudiadas (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación OVI0001.

Figura 47. Resumen de las capturas realizadas de las especies invasoras *Drosophila suzukii* (A), *Dryocosmus kuriphilus* (B), y *Vespa velutina* (C), así como el número total de individuos (D) y el número de Especies estudiadas (E) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación OVI0001.

1.3.3 **ESTACIÓN SOTO003**

Resultados: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en los órdenes Diptera, Lepidoptera y Coleoptera durante la campaña 2023. En cuanto a la diversidad de órdenes, la campaña 2023 presentó mayor diversidad (7 órdenes) en comparación con la campaña 2022 (2 órdenes) (Tabla 11; Figura 48).

Diptera: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia de todas las familias durante la campaña 2022. En cuanto a la diversidad de familias, la campaña 2023 presentó mayor diversidad (16 familias) en comparación con la campaña 2022 (9 familias) (Tabla 11; Figura 49).

Hymenoptera: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en las familias Vespidae y la familia Apidae durante la campaña 2023. En cuanto a la diversidad de familias/superfamilias, la campaña 2023 presentó mayor diversidad (4 familias/superfamilias) en comparación con la campaña 2022 (2 familias/superfamilias) (Tabla 11; Figura 50).

Coleoptera: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022 El estudio reveló, además, una mayor abundancia de las familias Nitidulidae y Staphilinidae durante la campaña 2022. En cuanto a la diversidad de familias, la campaña 2023 presentó mayor diversidad (4 familias) en comparación con la campaña 2022 (0 familias) (Tabla 11; Figura 51).

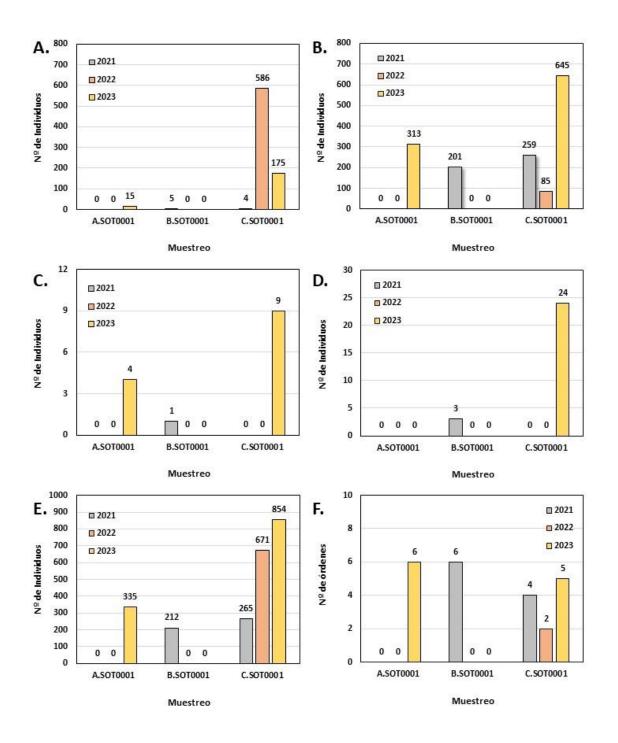

Especies invasoras: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en las especies *Drosophila suzukii* y *Vespa velutina* durante la campaña 2023. En cuanto a la diversidad de especies invasoras, la campaña 2023 presentó el mismo número de especies invasoras que la campaña 2022 (2 especies) (Tabla 11; Figura 52).

Tabla 11. Resumen de las capturas realizadas de los principales grupos estudiados durante las campañas 2021, 2022 y 2023 en la estación SOT0001. Se indica el sumatorio de los tres muestreos realizados en cada campaña (Σ). En rojo las especies invasoras detectadas.

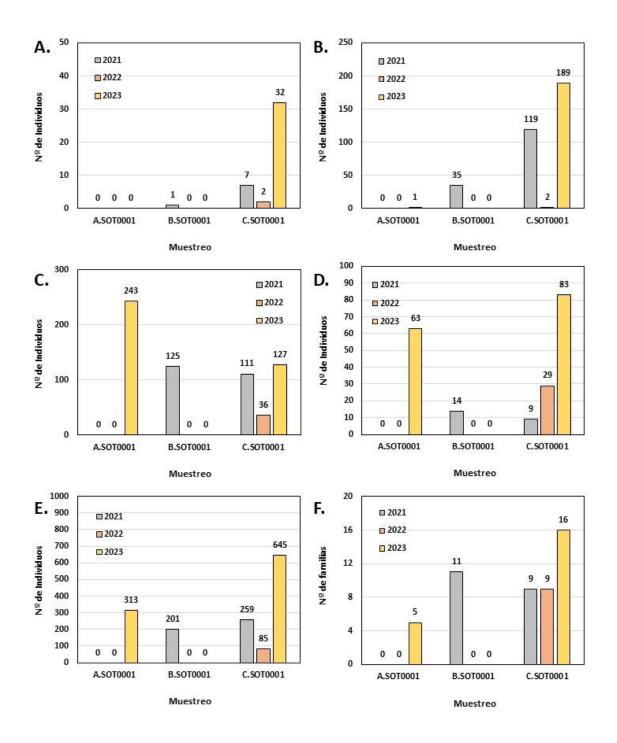
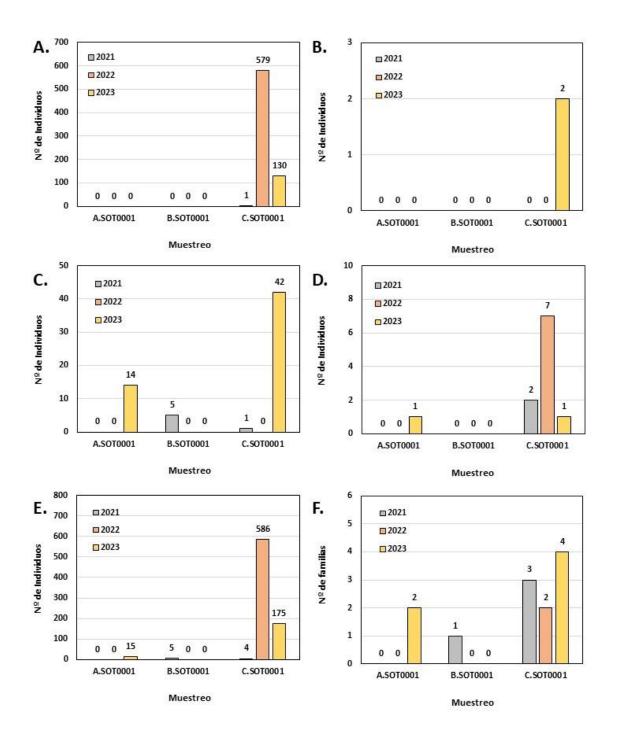
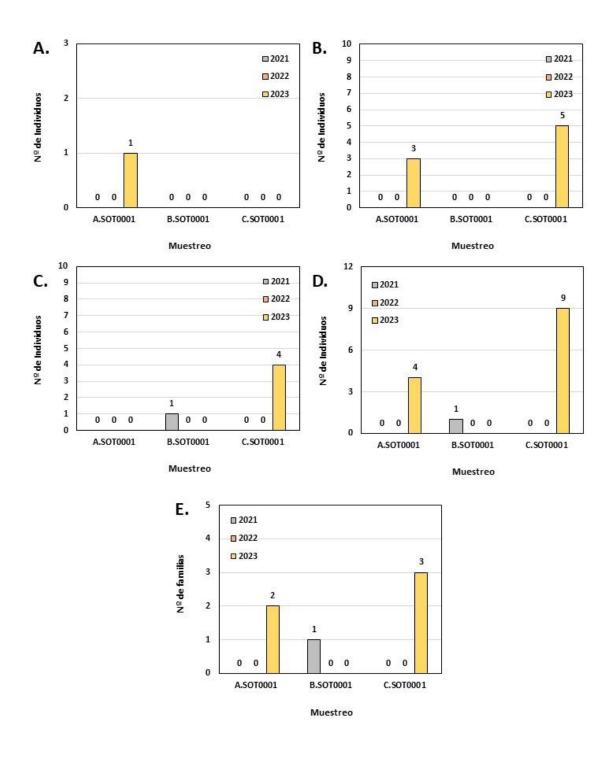

		202:	L			2022	2		2023				
TAXA	A.SOT2021	B.SOT2021	C.SOT2021	∑2021	A.SOT2022	B.SOT2022	C.SOT2022	∑2022	A.SOT2023	B.SOT2023	C.SOT2023	∑2023	
Hymenoptera	0	5	4	9	0	0	586	586	15	0	175	190	
Diptera	0	201	259	460	0	0	85	85	313	0	645	958	
Coleoptera	0	1	0	1	0	0	0	0	4	0	9	13	
Lepidoptera	0	3	0	3	0	0	0	0	0	0	24	24	
Otros órdenes	0	2	2	4	0	0	0	0	3	0	1	4	
Nº de Individuos	0	212	265	477	0	0	671	671	335	0	854	1189	
Nº de órdenes	0	6	4	8	0	0	2	2	6	0	5	7	
					DIF	TERA							
Muscidae	0	1	7	8	0	0	2	2	0	0	32	32	
Calliphoridae	0	35	119	154	0	0	2	2	1	0	189	190	
Drosophilidae	0	125	111	236	0	0	36	36	243	0	127	370	
Anisopodidae	0	14	9	23	0	0	29	29	63	0	83	146	
Otros Diptera	0	26	13	39	0	0	16	16	6	0	214	220	
Nº de Individuos	0	201	259	460	0	0	85	85	313	0	645	958	
Nº de familias	0	11	9	12	0	0	9	9	5	0	16	16	
					HYMEI	NOPTERA							
Formicidae	0	0	1	1	0	0	579	579	0	0	130	130	
Apidae	0	0	0	0	0	0	0	0	0	0	2	2	
Vespidae	0	5	1	6	0	0	0	0	14	0	42	56	
Chalcidoidea	0	0	2	2	0	0	7	7	1	0	1	2	
Nº de Individuos	0	5	4	9	0	0	586	586	15	0	175	190	
Nº de familias	0	1	3	3	0	0	2	2	2	0	4	4	

Tabla 11. Continuación.


TAVA		2022	l		2022				2023				
TAXA	A.SOT2021	B.SOT2021	C.SOT2021	Σ2021	A.SOT2022	B.SOT2022	C.SOT2022	∑2022	A.SOT2023	B.SOT2023	C.SOT2023	∑2023	
					COLEOPT	COLEOPTERA							
Staphilinidae	0	0	0	0	0	0	0	0	1	0	0	1	
Dermestidae	0	0	0	0	0	0	0	0	0	0	0	0	
Nitidulidae	0	0	0	0	0	0	0	0	3	0	5	8	
Otros Coleoptera	0	1	0	1	0	0	0	0	0	0	4	4	
Nº de Individuos	0	1	0	1	0	0	0	0	4	0	9	13	
Nº de familias	0	1	0	1	0	0	0	0	2	0	3	4	
				ı	ESPECIES INV	'ASORAS							
Drosophila suzukii	0	4	2	6	0	0	2	2	89	0	89	178	
Dryocosmus kuriphilus	0	0	0	0	0	0	7	7	0	0	0	0	
Torymus sinensis	0	0	0	0	0	0	0	0	0	0	0	0	
Vespa velutina	0	4	1	5	0	0	0	0	12	0	37	49	
Nº de Individuos	0	8	3	11	0	0	9	9	101	0	126	227	
Nº de Especies	0	2	2	2	0	0	2	2	2	0	2	2	


Figura 48. Resumen de las capturas realizadas del orden Hymenoptera (A), Diptera (B), Coleoptera (C) y Lepidoptera (D), así como el número total de individuos (E) y el número de órdenes estudiados (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación SOT0001.

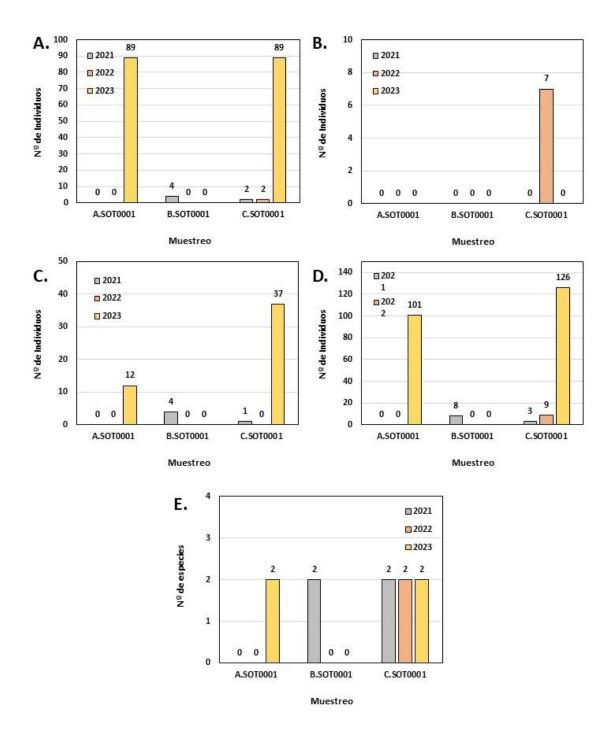

Figura 49. Resumen de las capturas realizadas de las familias Muscidae (A), Calliphoridae (B), Drosophilidae (C) y Anisopodidae (D), así como el número total de individuos (E) y el número de familias estudiadas (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación SOT0001.

Figura 50. Resumen de las capturas realizadas de las familias Formicidae (A), Apidae (B), Vespidae (C) y la superfamilia Chalcidoidea (D), así como el número total de individuos (E) y el número de familias/superfamilias estudiadas (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación SOT0001.

Figura 51. Resumen de las capturas realizadas de las familias Staphilinidae (A), Nitidulidae (B) y otras familias (C), así como el número total de individuos (D) y el número de familias estudiadas (E) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación SOT0001.

Figura 52. Resumen de las capturas realizadas de las especies invasoras *Drosophila suzukii* (A), *Dryocosmus kuriphilus* (B), y *Vespa velutina* (C), así como el número total de individuos (D) y el número de Especies estudiadas (E) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación SOT0001.

1.3.4 **ESTACIÓN GIJ0003**

Resultados: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia del orden Lepidoptera durante la campaña 2023. En cuanto a la diversidad de órdenes, la campaña 2023 presentó el mismo número de órdenes que la campaña 2022 (3 órdenes) (Tabla 12; Figura 53).

Diptera: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en la familia Muscidae durante la campaña 2023. En cuanto a la diversidad de familias, la campaña 2023 presentó menor diversidad (7 familias) en comparación con la campaña 2022 (11 familias) (Tabla 12; Figura 54).

Hymenoptera: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2022 respecto a la campaña 2021. El estudio reveló, además, una mayor abundancia en la Superfamilia Chalcidoidea durante la campaña 2023. En cuanto a la diversidad de familias/superfamilias, la campaña 2021 presentó menor diversidad (3 familias/superfamilias) en comparación con la campaña 2022 (4 familias/superfamilias) (Tabla 12; Figura 55).

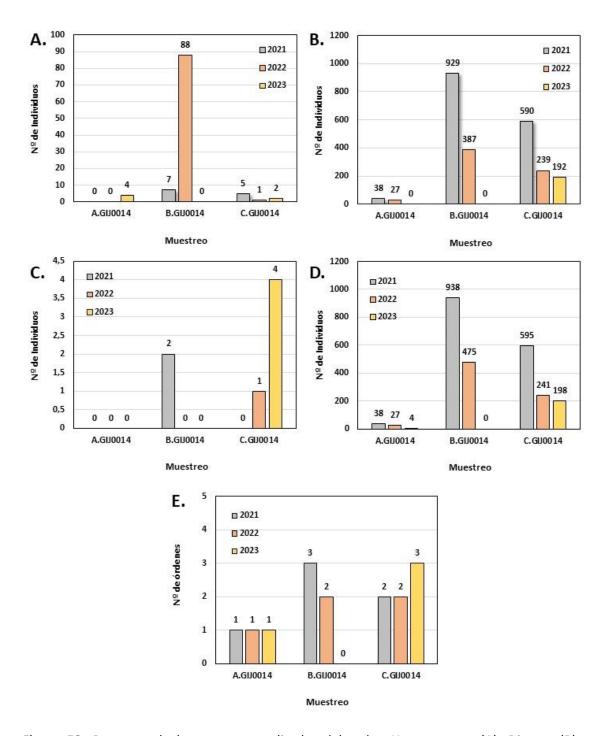

Especies invasoras: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. En cuanto a la diversidad de especies invasoras, la campaña 2023 presentó el mismo número de especies invasoras que la campaña 2022 (2 especies) (Tabla 12; Figura 56).

Tabla 12. Resumen de las capturas realizadas de los principales grupos estudiados durante las campañas 2021, 2022 y 2023 en la estación GIJ0014. Se indica el sumatorio de los tres muestreos realizados en cada campaña (Σ). En rojo las especies invasoras detectadas.

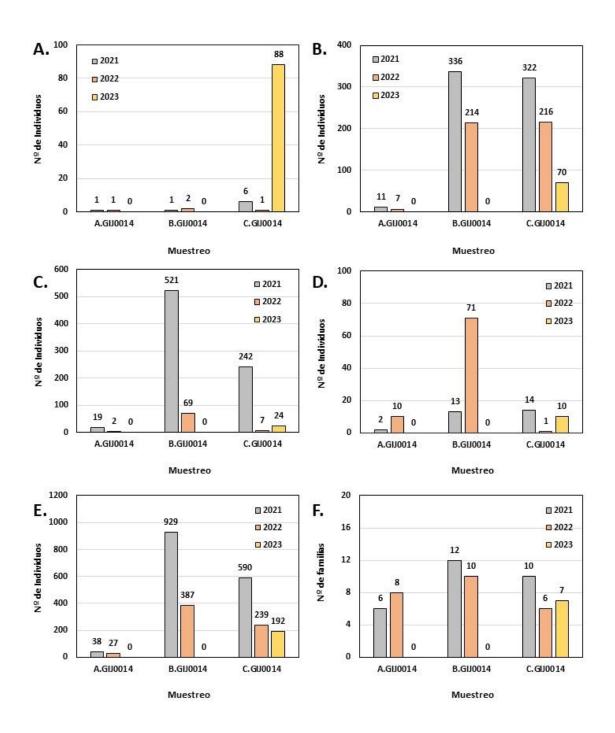
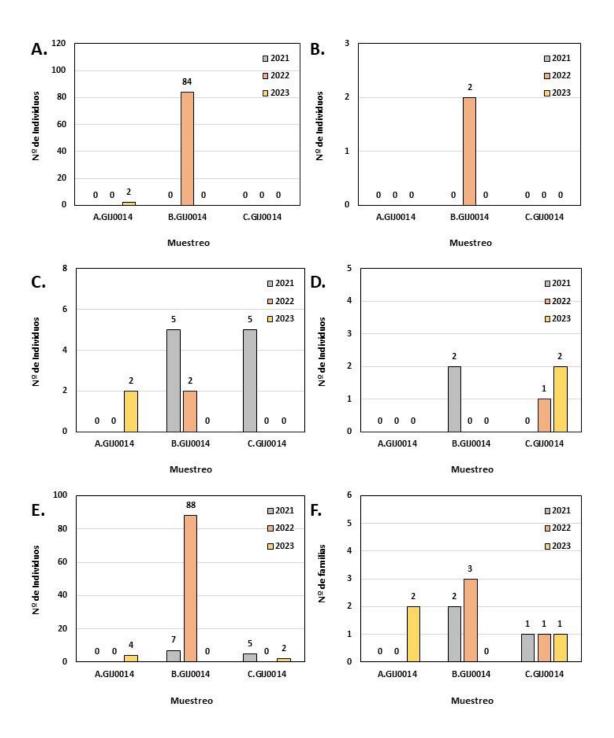

		202:	L			2022	2		2023				
TAXA	A.GIJ2021	B.GIJ2021	C.GIJ2021	Σ2021	A.GIJ2022	B.GIJ2022	C.GIJ2022	Σ2022	A.GIJ2023	B.GIJ2023	C.GIJ2023	∑2023	
Hymenoptera	0	7	5	15	0	88	1	89	4	0	2	6	
Diptera	38	929	590	2489	27	387	239	653	0	0	192	192	
Coleoptera	0	0	0	0	0	0	0	0	0	0	0	0	
Lepidoptera	0	2	0	7	0	0	1	1	0	0	4	4	
Otros órdenes	0	0	0	0	0	0	0	0	0	0	0	0	
Nº de Individuos	38	938	595	2511	27	475	241	743	4	0	198	202	
Nº de órdenes	1	3	2	3	1	2	2	3	1	0	3	3	
					DIF	TERA							
Muscidae	1	1	6	75	1	2	1	4	0	0	88	88	
Calliphoridae	11	336	322	1334	7	214	216	437	0	0	70	70	
Drosophilidae	19	521	242	847	2	69	7	78	0	0	24	24	
Anisopodidae	2	13	14	30	10	71	1	82	0	0	10	10	
Otros Diptera	5	58	6	203	7	31	14	52	0	0	10	10	
Nº de Individuos	38	929	590	2489	27	387	239	653	0	0	192	192	
Nº de familias	6	12	10	14	8	10	6	11	0	0	7	7	
					HYMEI	NOPTERA							
Formicidae	0	0	0	0	0	84	0	84	2	0	0	2	
Apidae	0	0	0	0	0	2	0	2	0	0	0	0	
Vespidae	0	5	5	10	0	2	0	2	2	0	0	2	
Chalcidoidea	0	2	0	5	0	0	1	1	0	0	2	2	
Nº de Individuos	0	7	5	15	0	88	0	88	4	0	2	6	
Nº de familias	0	2	1	2	0	3	1	4	2	0	1	3	

Tabla 12. Continuación.


TAVA		2022	l			2022	2		2023			
TAXA	A.GIJ2021	B.GIJ2021	C.GIJ2021	∑2021	A.GIJ2022	B.GIJ2022	C.GIJ2022	∑2022	A.GIJ2023	B.GIJ2023	C.GIJ2023	∑2023
	COLEOPTERA											
Staphilinidae	0	0	0	0	0	0	0	0	0	0	0	0
Dermestidae	0	0	0	0	0	0	0	0	0	0	0	0
Nitidulidae	0	0	0	0	0	0	0	0	0	0	0	0
Otros Coleoptera	0	0	0	0	0	0	0	0	0	0	0	0
Nº de Individuos	0	0	0	0	0	0	0	0	0	0	0	0
Nº de familias	0	0	0	0	0	0	0	0	0	0	0	0
				E	SPECIES INV	ASORAS						
Drosophila suzukii	18	66	9	79	1	34	3	38	0	0	5	5
Dryocosmus kuriphilus	0	0	0	0	0	0	0	0	0	0	0	0
Torymus sinensis	0	0	0	0	0	0	0	0	0	0	0	0
Vespa velutina	0	3	5	8	0	1	0	1	1	0	0	1
Nº de Individuos	0	69	14	87	1	35	0	39	1	0	5	6
Nº de Especies	0	2	2	2	1	2	0	2	1	0	1	2

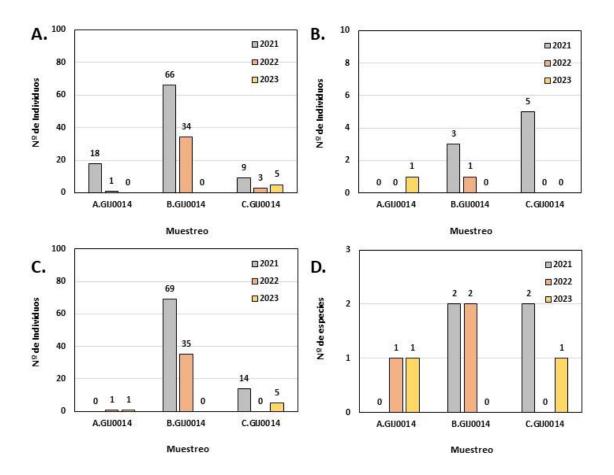

Figura 53. Resumen de las capturas realizadas del orden Hymenoptera (A), Diptera (B) y Lepidoptera (C), así como el número total de individuos (D) y el número de órdenes estudiados (E) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación GIJ0014.

Figura 54. Resumen de las capturas realizadas de las familias Muscidae (A), Calliphoridae (B), Drosophilidae (C) y Anisopodidae (D), así como el número total de individuos (E) y el número de familias estudiadas (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación GIJ0014.

Figura 55. Resumen de las capturas realizadas de las familias Formicidae (A), Apidae (B), Vespidae (C) y la superfamilia Chalcidoidea (D), así como el número total de individuos (E) y el número de familias/superfamilias estudiadas (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación GIJ0001.

Figura 56. Resumen de las capturas realizadas de las especies invasoras *Drosophila suzukii* (A) y *Vespa velutina* (B), así como el número total de individuos (C) y el número de Especies estudiadas (D) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación GIJ0014.

1.3.5 **ESTACIÓN VIL0019**

Resultados: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia del orden Lepidoptera e Hymenoptera durante la campaña 2023. En cuanto a la diversidad de órdenes, la campaña 2023 presentó el mismo número de ordenes (4 órdenes) en que la campaña 2022 (Tabla 13; Figura 57).

Diptera: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en la familia Calliphoridae durante la campaña 2023. En cuanto a la diversidad de familias, la campaña 2023 presentó mayor diversidad (15 familias) en comparación con la campaña 2022 (11 familias) (Tabla 13; Figura 58).

Hymenoptera: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia de la familia Vespidae y la superfamilia Chalcidoidea durante la campaña 2023. En cuanto a la diversidad de familias/superfamilias, la campaña 2023 presentó la misma diversidad (2 familias/superfamilias) que la campaña 2022 (2 familias/superfamilias) (Tabla 13; Figura 59).

Coleoptera: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. En cuanto a la diversidad de familias, la campaña 2023 presentó mayor diversidad (1 familia) en comparación con la campaña 2022 (0 familias) (Tabla 13; Figura 60).

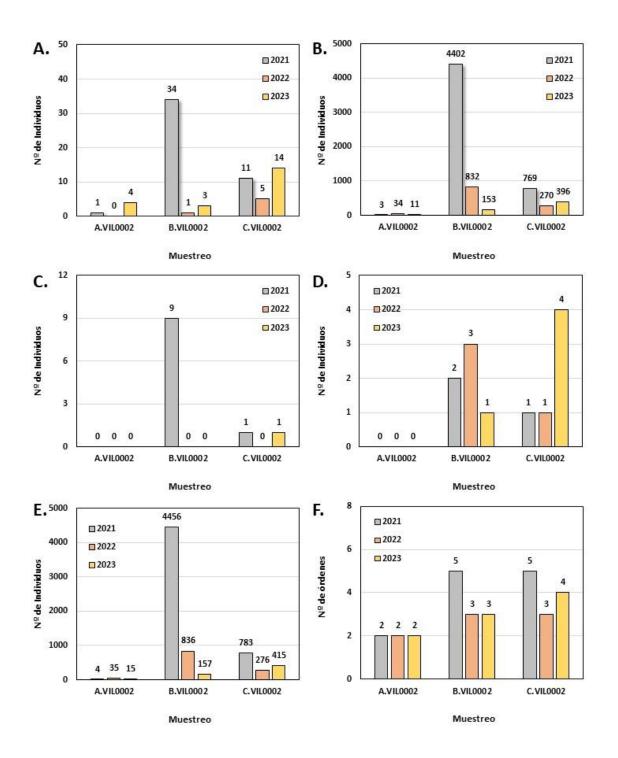

Especies invasoras: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en las especies *Drosophila suzukii* y *Vespa velutina* durante la campaña 2023, mientras que la especie *Dryocosmus kuriphilus* presentó mayor abundancia durante la campaña 2022. En cuanto a la diversidad de especies invasoras, la campaña 2023 presentó el mismo número de especies invasoras que la campaña 2021 y 2022 (2 especies) (Tabla 13; Figura 61).

Tabla 13. Resumen de las capturas realizadas de los principales grupos estudiados durante las campañas 2021, 2022 y 2023 en la estación VIL0002. Se indica el sumatorio de los tres muestreos realizados en cada campaña (Σ). En rojo las especies invasoras detectadas.

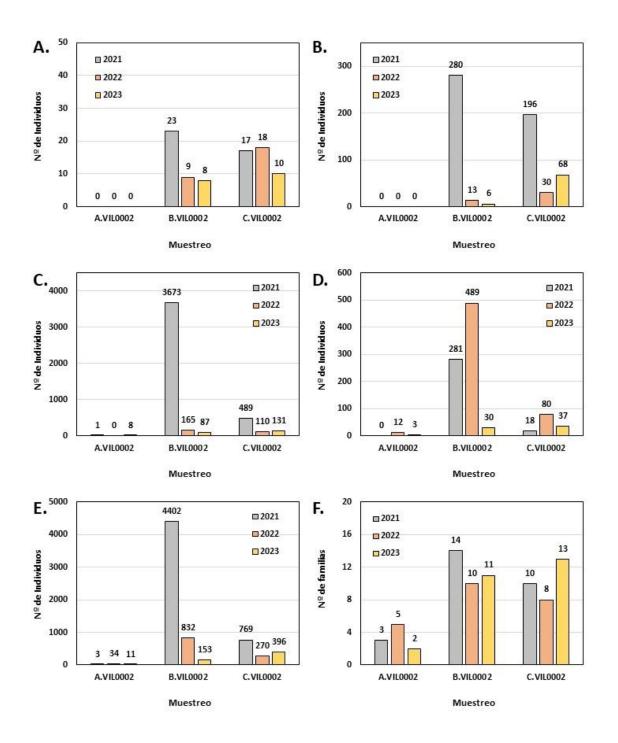
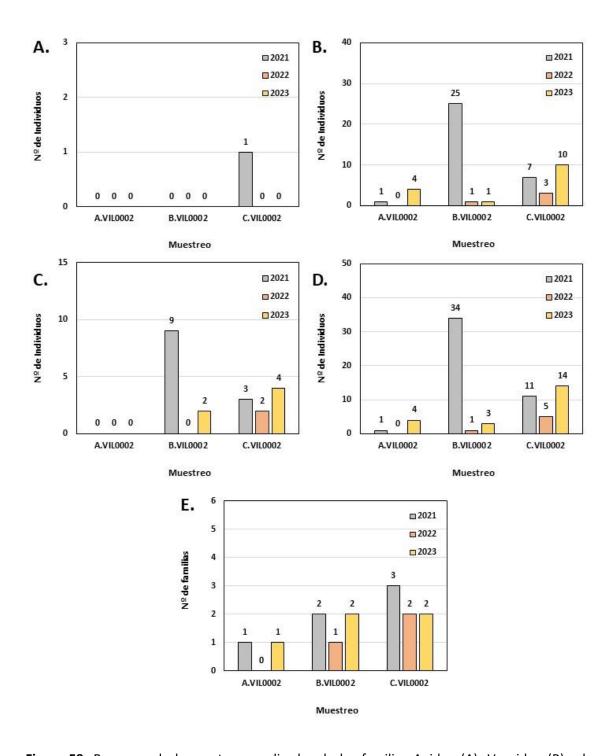
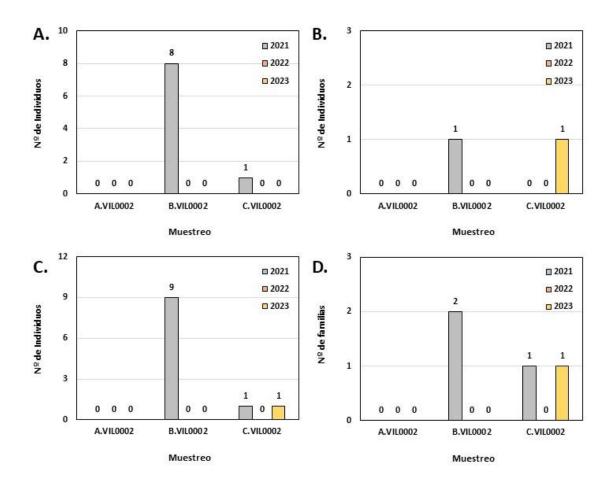

		202:	L			2022	2		2023			
TAXA	A.VIL2021	B.VIL2021	C.VIL2021	Σ2021	A.VIL2022	B.VIL2022	C.VIL2022	Σ2022	A.VIL2023	B.VIL2023	C.VIL2023	∑2023
Hymenoptera	1	34	11	46	0	1	5	6	4	3	14	21
Diptera	3	4402	769	5174	34	832	270	1136	11	153	396	560
Coleoptera	0	9	1	10	0	0	0	0	0	0	1	1
Lepidoptera	0	2	1	3	0	3	1	4	0	1	4	5
Otros órdenes	0	9	1	10	1	0	0	1	0	0	0	0
Nº de Individuos	4	4456	783	5243	35	836	276	1147	15	157	415	587
Nº de órdenes	2	5	5	6	2	3	3	4	2	3	4	4
					DIF	TERA						
Muscidae	0	23	17	40	0	9	18	27	0	8	10	18
Calliphoridae	0	280	196	476	0	13	30	43	0	6	68	74
Drosophilidae	1	3673	489	4163	0	165	110	275	8	87	131	226
Anisopodidae	0	281	18	299	12	489	80	581	3	30	37	70
Otros Diptera	2	145	49	196	22	156	32	210	0	22	150	172
Nº de Individuos	3	4402	769	5174	34	832	270	1136	11	153	396	560
Nº de familias	3	14	10	15	5	10	8	11	2	11	13	15
					HYMEI	NOPTERA						
Formicidae	0	0	0	0	0	0	0	0	0	0	0	0
Apidae	0	0	1	1	0	0	0	0	0	0	0	0
Vespidae	1	25	7	33	0	1	3	4	4	1	10	15
Chalcidoidea	0	9	3	12	0	0	2	2	0	2	4	6
Nº de Individuos	1	34	11	46	0	1	5	6	4	3	14	21
Nº de familias	1	2	3	3	0	1	2	2	1	2	2	2

Tabla 13. Continuación.


TAVA		2022	L			2022	2		2023			
TAXA	A.VIL2021	B.VIL2021	C.VIL2021	∑2021	A.VIL2022	B.VIL2022	C.VIL2022	∑2022	A.VIL2023	B.VIL2023	C.VIL2023	∑2023
	COLEOPTERA											
Staphilinidae	0	8	1	9	0	0	0	0	0	0	0	0
Dermestidae	0	0	0	0	0	0	0	0	0	0	0	0
Nitidulidae	0	1	0	1	0	0	0	0	0	0	1	1
Otros Coleoptera	0	0	0	0	0	0	0	0	0	0	0	0
Nº de Individuos	0	9	1	10	0	0	0	0	0	0	1	1
Nº de familias	0	2	1	2	0	0	0	0	0	0	1	1
				E	SPECIES INV	ASORAS						
Drosophila suzukii	0	875	46	921	0	0	0	0	6	23	14	43
Dryocosmus kuriphilus	0	0	0	0	0	0	2	2	0	0	0	0
Torymus sinensis	0	0	0	0	0	0	0	0	0	0	0	0
Vespa velutina	0	21	7	28	0	1	3	4	0	1	9	10
Nº de Individuos	0	896	53	949	0	1	5	6	6	24	23	53
Nº de Especies	0	2	2	2	0	1	2	2	1	2	2	2


Figura 57. Resumen de las capturas realizadas del orden Hymenoptera (A), Diptera (B), Coleoptera (C) y Lepidoptera (D), así como el número total de individuos (E) y el número de órdenes estudiados (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación VIL0002.

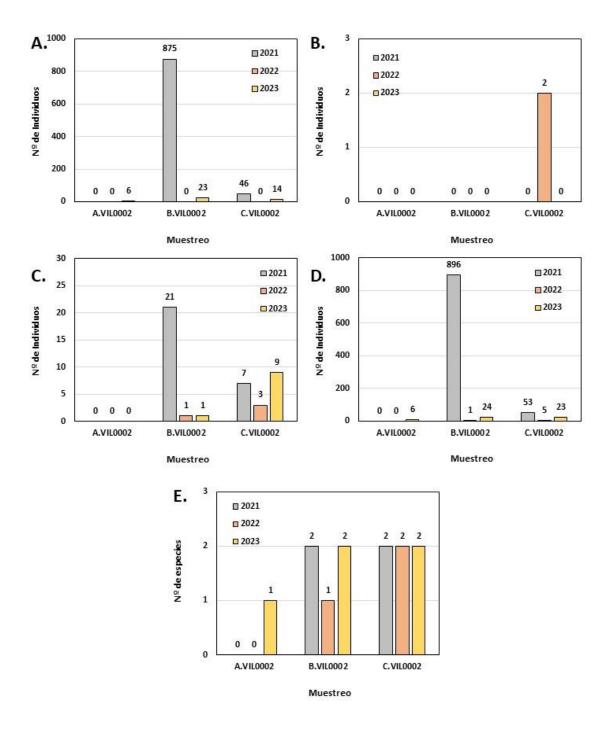

Figura 58. Resumen de las capturas realizadas de las familias Muscidae (A), Calliphoridae (B), Drosophilidae (C) y Anisopodidae (D), así como el número total de individuos (E) y el número de familias estudiadas (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación VIL0002.

Figura 59. Resumen de las capturas realizadas de las familias Apidae (A), Vespidae (B) y la superfamilia Chalcidoidea (C), así como el número total de individuos (D) y el número de familias/superfamilias estudiadas (E) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación VIL0002.

Figura 60. Resumen de las capturas realizadas de las familias Staphilinidae (A) y Nitidulidae (B), así como el número total de individuos (C) y el número de familias estudiadas (D) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación VIL0002.

Figura 61. Resumen de las capturas realizadas de las especies invasoras *Drosophila suzukii* (A), *Dryocosmus kuriphilus* (B), y *Vespa velutina* (C), así como el número total de individuos (D) y el número de Especies estudiadas (E) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación VIL0002.

1.3.6 **ESTACIÓN NAR0021**

Resultados: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en los órdenes Hymenoptera y Lepidoptera durante la campaña 2023. En cuanto a la diversidad de órdenes, la campaña 2023 presentó menor diversidad (4 órdenes) en comparación con la campaña 2022 (5 órdenes) (Tabla 14; Figura 62).

Diptera: El estudio comparativo reveló una menor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en la familia Muscidae durante la campaña 2023. En cuanto a la diversidad de familias, la campaña 2023 presentó mayor diversidad (14 familias) en comparación con la campaña 2022 (12 familias) (Tabla 14; Figura 63).

Hymenoptera: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023. El estudio reveló, además, una mayor abundancia en las familias Vespidae y Formicidae durante la campaña 2023. En cuanto a la diversidad de familias/superfamilias, la campaña 2023 presentó mayor diversidad (4 familias/superfamilias) en comparación con la campaña 2022 (3 familias/superfamilias) (Tabla 14; Figura 64).

Coleoptera: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023 respecto a la campaña 2023. El estudio reveló, además, una menor abundancia en la familia Nitidulidae y la familia Staphilinidae durante la campaña 2023. En cuanto a la diversidad de familias, la campaña 2023 presentó la misma diversidad (3 familias) que la campaña 2022 (2 familias) (Tabla 14; Figura 65).

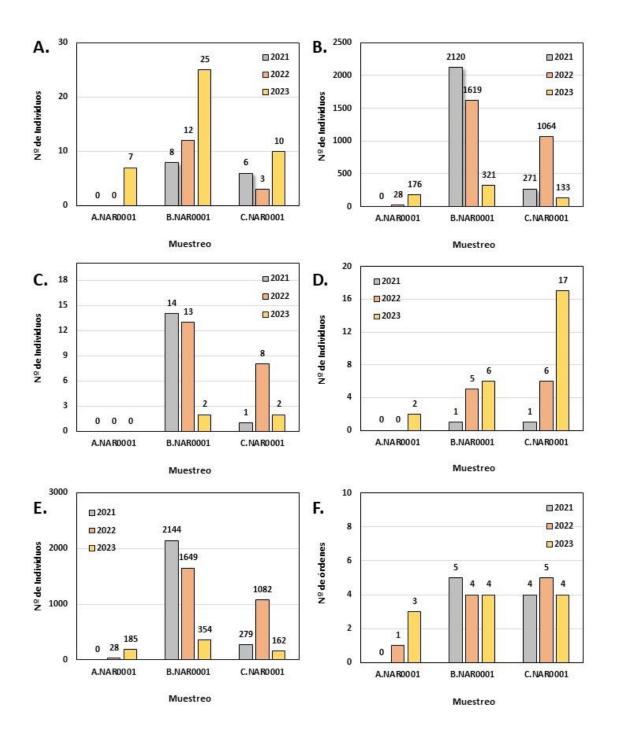

Especies invasoras: El estudio comparativo reveló un menor número de individuos durante la campaña 2023. El estudio reveló, además, una mayor abundancia en la especie *Vespa velutina* durante la campaña 2023, mientras que la especie *Drosophila suzukii* presentó menor abundancia. En cuanto a la diversidad de especies invasoras, la campaña 2023 presentó el mismo número de especies invasoras que las campañas anteriores (2 especies) (Tabla 14; Figura 66).

Tabla 14. Resumen de las capturas realizadas de los principales grupos estudiados durante las campañas 2021, 2022 y 2023 en la estación NAR0001. Se indica el sumatorio de los tres muestreos realizados en cada campaña (Σ). En rojo las especies invasoras detectadas.

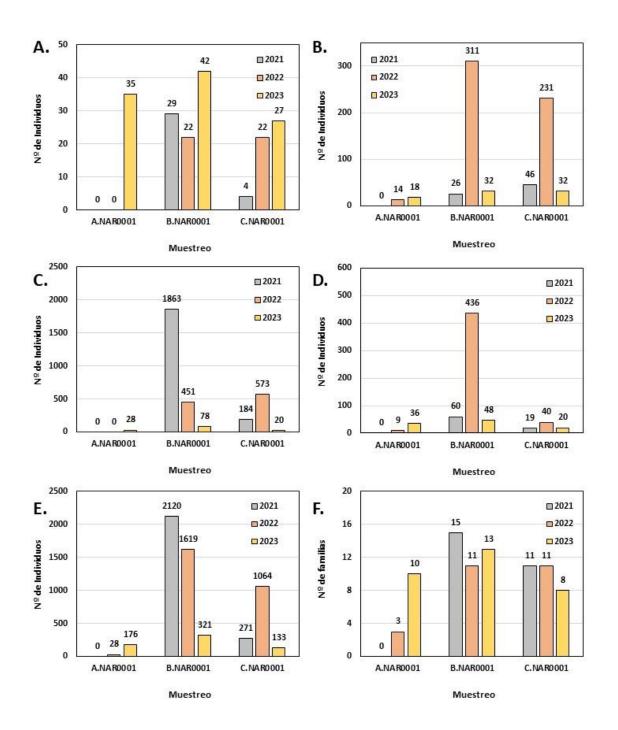
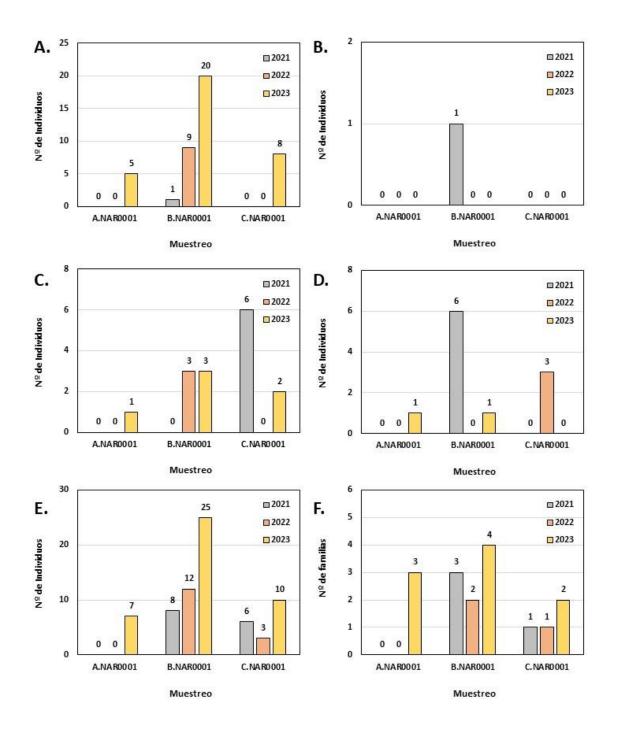
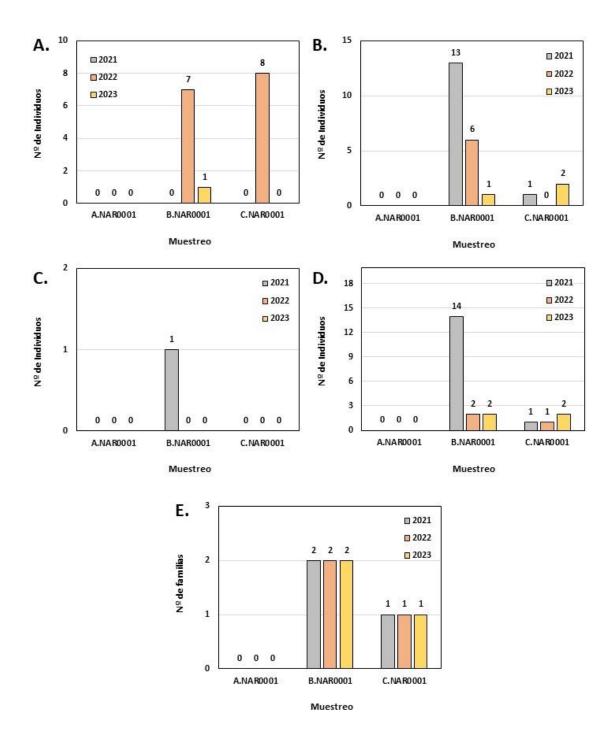

		2021	L			2022			2023			
TAXA	A.NAR2021	B.NAR2021	C.NAR2021	Σ2021	A.NAR2022	B.NAR2022	C.NAR2022	∑2022	A.NAR2023	B.NAR2023	C.NAR2023	∑2023
Hymenoptera	0	8	6	14	0	12	3	15	7	25	10	42
Diptera	0	2120	271	2391	28	1619	1064	2711	176	321	133	630
Coleoptera	0	14	1	15	0	13	8	21	0	2	2	4
Lepidoptera	0	1	1	2	0	5	6	11	2	6	17	25
Otros órdenes	0	1	0	1	0	0	1	1	0	0	0	0
Nº de Individuos	0	2144	279	2423	28	1649	1082	2759	185	354	162	701
Nº de órdenes	0	5	4	5	1	4	5	5	3	4	4	4
					DII	PTERA						
Muscidae	0	29	4	33	0	22	22	44	35	42	27	104
Calliphoridae	0	26	46	72	14	311	231	556	18	32	32	82
Drosophilidae	0	1863	184	2047	0	451	573	1024	28	78	20	126
Anisopodidae	0	60	19	79	9	436	40	485	36	48	20	104
Otros Diptera	0	142	18	160	5	399	198	602	59	121	34	214
Nº de Individuos	0	2120	271	2391	28	1619	1064	2711	176	321	133	630
Nº de familias	0	15	11	15	3	11	11	12	10	13	8	14
					HYME	NOPTERA						
Formicidae	0	1	0	1	0	9	0	9	5	20	8	33
Apidae	0	1	0	1	0	0	0	0	0	0	0	0
Vespidae	0	0	6	6	0	3	0	3	1	3	2	6
Chalcidoidea	0	6	0	6	0	0	3	3	1	1	0	2
Nº de Individuos	0	8	6	14	0	12	3	15	7	25	10	42
Nº de familias	0	3	1	4	0	2	1	3	3	4	2	4

Tabla 14. Continuación.


TAVA		202:	l			202	2		2023			
TAXA	A.NAR2021	B.NAR2021	C.NAR2021	∑2021	A.NAR2022	B.NAR2022	C.NAR2022	∑2022	A.NAR2023	B.NAR2023	C.NAR2023	∑2023
	COLEOPTERA											
Staphilinidae	0	0	0	0	0	7	8	15	0	1	0	1
Dermestidae	0	0	0	0	0	0	0	0	0	0	0	0
Nitidulidae	0	13	1	14	0	6	0	6	0	1	2	3
Otros Coleoptera	0	1	0	1	0	0	0	0	0	0	0	0
Nº de Individuos	0	14	1	15	0	13	8	21	0	2	2	4
Nº de familias	0	2	1	2	0	2	1	2	0	2	1	2
				ı	ESPECIES INV	ASORAS						
Drosophila suzukii	0	1	6	7	0	7	0	7	1	3	0	4
Dryocosmus kuriphilus	0	0	0	0	0	0	1	1	0	0	0	0
Torymus sinensis	0	0	0	0	0	0	0	0	0	0	0	0
Vespa velutina	0	0	1	1	0	0	0	0	0	2	1	3
Nº de Individuos	0	1	7	8	0	7	1	8	1	5	1	7
Nº de Especies	0	1	2	2	0	1	1	2	1	2	1	2


Figura 62. Resumen de las capturas realizadas del orden Hymenoptera (A), Diptera (B), Coleoptera (C) y Lepidoptera (D), así como el número total de individuos (E) y el número de órdenes estudiados (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación NAR0001.

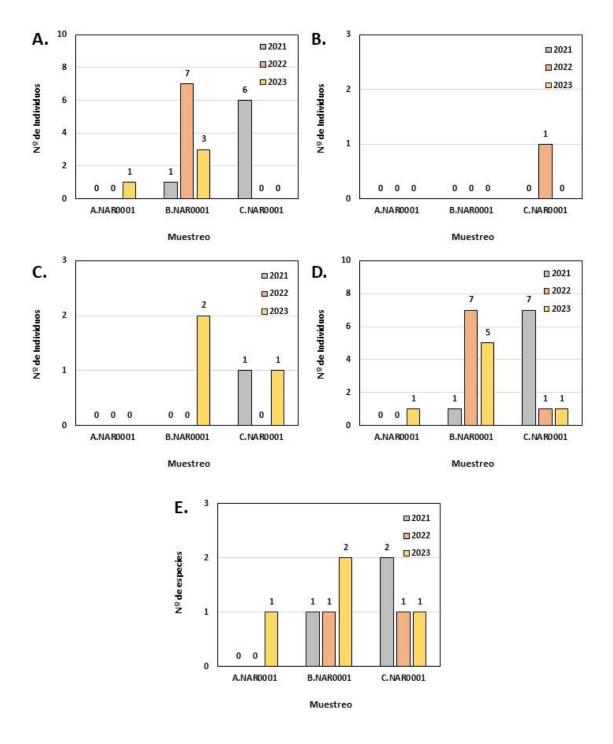

Figura 63. Resumen de las capturas realizadas de las familias Muscidae (A), Calliphoridae (B), Drosophilidae (C) y Anisopodidae (D), así como el número total de individuos (E) y el número de familias estudiadas (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación NAR0001.

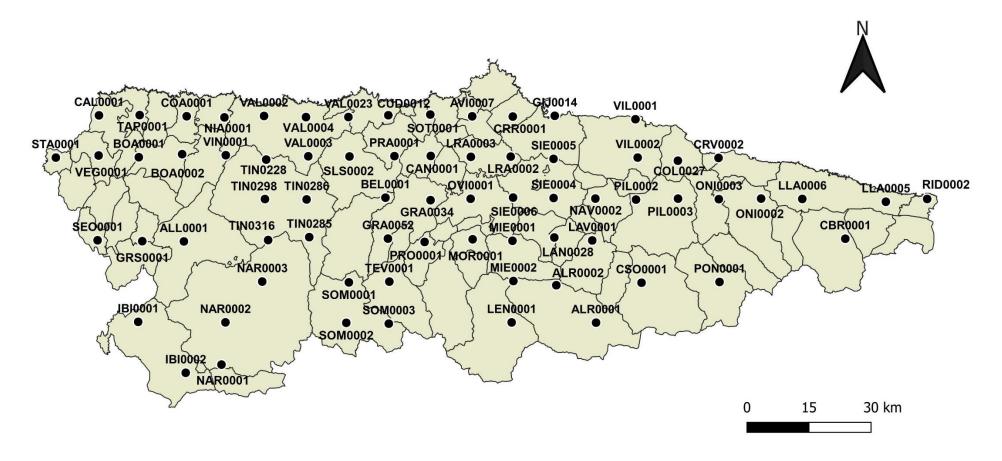
Figura 64. Resumen de las capturas realizadas de las familias Formicidae (A), Apidae (B), Vespidae (C) y la superfamilia Chalcidoidea (D), así como el número total de individuos (E) y el número de familias/superfamilias estudiadas (F) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación NAR0001.

Figura 65. Resumen de las capturas realizadas de las familias Staphilinidae (A) y Nitidulidae (B) y otras familias (C), así como el número total de individuos (D) y el número de familias estudiadas (E) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación NAR0001.

Figura 66. Resumen de las capturas realizadas de las especies invasoras *Drosophila suzukii* (A), *Dryocosmus kuriphilus* (B), y *Vespa velutina* (C), así como el número total de individuos (D) y el número de Especies estudiadas (E) durante las campañas 2021, 2022 y 2023 en los diferentes muestreos de la estación NAR0001.

2 Análisis de impacto del trampeo de Avispa asiática en la comunidad de Véspidos y Ápidos (Hymenoptera)

En este estudio se ha analizado la diversidad de insectos capturados inintencionadamente en trampas para el control de *V. velutina*. Se analizaron un total de 6 muestreos de cada una de las 71 localidades muestreadas (426 muestras), durante la campaña 2023 (Figura 68; Tabla 15). La tipología de trampas utilizada fue el modelo comercial VespaCatch® de Véto-pharma (Palaiseau, Francia) rellenadas con el líquido atrayente VespaCatch® de la misma casa comercial (información complementaria en https://www.blog-veto-pharma.com/) (Figura 67).


Para la identificación de los individuos capturados se han utilizado caracteres morfológicos externos, así como estructura y disposición de la genitalia siguiendo los trabajos de Baraneket al, 2018, Buck & Cheung, 2008, Gogala, 2022 y Vega et al 2022.

La información geográfica fue procesada mediante el Sistema de Información Geográfica libre y de Código Abierto QGIS 3.12.3[®].

Figura 67. Trampa del modelo comercial VespaCatch® de Véto-pharma

Figura 68. Situación de las estaciones elegidas para este estudio en el Principado de Asturias.

Tabla 15. Información geográfica de las diferentes estaciones analizadas

Estación	Muestreo	Fecha	Municipio	Lugar	Longitud	Latitud
	1	04/04/2023				
	2	28/04/2023				
2023ALL0001	3	12/05/2023	Allande	Penas	-6,75172728	43,24389415
2023ALL0001	4	30/05/2023	Allaliue	Rubias	-0,73172728	43,24363413
	5	16/06/2023				
	6	04/07/2023				
	1	11/04/2023				
	2	27/04/2023				
2023ALR0001	3	16/05/2023	Aller	les Foces	-5,51801037	43,10100858
2023ALN0001	4	30/05/2023	Allei	163 1 0063	3,51001057	43,10100838
	5	15/06/2023				
	6	30/06/2023				
	1	11/04/2023				
	2	27/04/2023				
2023ALR0002	3	16/05/2023	Aller	Orilles	-5,63959692	43,17981364
2023ALN0002	4	30/05/2023	Allei	Offiles	-5,63959692	43,17981304
	5	15/06/2023				
	6	30/06/2023				
	1	13/04/2023				
	2	25/04/2023				
2023AVI0007	3	09/05/2023	Avilés	Parque La	-5,90731088	43,54004039
2023AV10007	4	23/05/2023		Luz	-5,50751088	43,34004033
	5	12/06/2023				
	6	28/06/2023				
	1	31/03/2023				
	2	24/04/2023				
2023BEL0001	3	08/05/2023	Belmonte de	El Piqueiro	-6,15743358	43,35688104
20230210001	4	22/05/2023	Miranda	Liriqueilo	-0,13743336	43,33088104
	5	06/06/2023				
	6	22/06/2023				
	1	11/04/2023				
	2	25/04/2023				
2023BOA0001	3	15/05/2023	Boal	Brañalibel	-6,89738397	43,42198801
2023000001	4	26/05/2023	Doai	Diananbei	-0,83738337	43,42138801
	5	13/06/2023				
	6	05/07/2023				
	1	11/04/2023				
	2	26/04/2023				
2023BOA0002	3	15/05/2023	Boal	Miñagón	-6 760//720	/3 /33113/E
2023BOA0002	4	26/05/2023	DUai	Miñagón	-6,76944729	9 43,43311245
	5	13/06/2023				
	6	05/07/2023				

Tabla 15. Continuación.

Estación	Muestreo	Fecha	Municipio	Lugar	Longitud	Latitud
	1	11/04/2023				
	2	25/04/2023				
20226410004	3	10/05/2023	Cahralas	Lac Archae	4 70207040	42 20740200
2023CAL0001	4	25/05/2023	Cabrales	Las Arenas	-4,78297949	43,29740289
	5	12/06/2023				
	6	04/07/2023				
	1	03/04/2023				
	2	24/04/2023				
2023CAN0001	3	08/05/2023	Candamo	Llamero	-6,02686699	43,45125652
2023CAN0001	4	22/05/2023	Carraanio	Liamero	-0,02080099	43,43123032
	5	08/06/2023				
	6	27/06/2023				
	1	10/04/2023				
	2	26/04/2023				
2023CBR0001	3	15/05/2023	Cabrales	Las Arenas	-/ 782070/0	43,29740289
2023CBN0001	4	25/05/2023	Cabiales	Las Alelias	-4,78237343	43,23740283
	5	14/06/2023				
	6	05/07/2023				
	1	11/04/2023				
	2	27/04/2023				
2023COA0001	3	15/05/2023	Coaña	Coaña	-6 76032711	43,51572013
2023000001	4	26/05/2023	Couria	Coaria	0,70032711	45,51572015
	5	13/06/2023				
	6	05/07/2023				
	1	10/04/2023				
	2	26/04/2023				
2023COL0027	3	10/05/2023	Colunga	Colunga	-5,288365	43,4579004
20230020	4	25/05/2023	colaliga	Columba	3,200303	13, 1373001
	5	14/06/2023				
	6	05/07/2023				
	1	07/04/2023				
	2	25/04/2023				
2023CRR0001	3	09/05/2023	Carreño	Carreño	-5.78546483	43,54281559
	4	23/05/2023	Sun Sin S	54.75.15	0,7 00 10 100	10,0 120200
	5	12/06/2023				
	6	28/06/2023				
_	1	10/04/2023				
	2	26/04/2023				
2023CRV0002	3	10/05/2023	Caravia	Caravia	-5,16704634	43,4665258
	4	25/05/2023		Caravia	-5,16/04634	43,4665258
	5	20/06/2023				
	6	05/07/2023				

Tabla 15. Continuación.

Estación	Muestreo	Fecha	Municipio	Lugar	Longitud	Latitud
	1	14/04/2023				
	2	28/04/2023				
2023CSO0001	3	17/05/2023	Caso	Coballes	E 207220EE	42 100E4126
2023C3O0001	4	05/06/2023	Caso	Coballes	-5,38723055	43,19054126
	5	21/06/2023				
	6	06/07/2023				
	1	12/04/2023				
	2	25/04/2023		Armayor		
2023CUD0012	3	09/05/2023	Cudillero		-6,15798041	43,53609038
2023C0D0012	4	23/05/2023	Cualifero		-0,13798041	43,33009038
	5	12/06/2023				
	6	28/06/2023				
	1	13/04/2023				
	2	25/04/2023				
2023GIJ0014	3	09/05/2023	Gijón	Cerro Sta. Catalina	-5,66031162	12 51765122
2023010014	4	23/05/2023	dijon			43,54/05433
	5	12/06/2023				
	6	28/06/2023				
	1	10/04/2023				
	2	03/05/2023				
2023GRA0034	3	12/05/2023	Grado	Vega de	-6,02271158	43,35526746
2023011.40034	4	26/05/2023	Grado	Peridiellu	0,02271130	43,33320740
	5	09/06/2023				
	6	22/06/2023				
	1	10/04/2023				
	2	03/05/2023				
2023GRA0052	3	12/05/2023	Grado	Bárzana	-6,14525702	43,26840477
202301710032	4	26/05/2023	Grado	Barzana	0,14323702	+3,200+0+77
	5	09/06/2023				
	6	22/06/2023				
	1	04/04/2023				
	2	28/04/2023				
2023GRS0001	3	12/05/2023	Grandas de	AS-12 límite	-6,87560342	43,24039326
	4	30/05/2023	Salime	concejos	0,07000.1	,
	5	16/06/2023				
	6	04/07/2023				
	1	04/04/2023				
	2	28/04/2023				
2023IBI0001	3	12/05/2023	lbias	Ctra. Uría	-6,87611036	43,05789064
2023IBI0001	4	30/05/2023				6 43,05789064
	5	16/06/2023				
	6	04/07/2023				

Tabla 15. Continuación.

Estación	Muestreo	Fecha	Municipio	Lugar	Longitud	Latitud
	1	04/04/2023				
	2	28/04/2023				
2023IBI0002	3	12/05/2023	Ibias	Taladriz	-6,72928255	42 OF014101
20231810002	4	30/05/2023	IDIdS	Talauriz	-0,72928255	42,95914101
	5	16/06/2023				
	6	04/07/2023				
	1	13/04/2023				
	2	28/04/2023				
2023LAN0028	3	17/05/2023	Langreo	fuente la barraca	-5,65005049	43,28336527
2023LAN0028	4	05/06/2023	Langreo		-3,03003049	43,26330327
	5	21/06/2023				
	6	06/07/2023				
	1	13/04/2023				
	2	28/04/2023				
2023LAV0001	3	17/05/2023	Laviana	cruce San	-5,53640999	43,27996892
2023LAV0001	4	05/06/2023	Lavialia	Pedro	-3,33040333	43,27990092
	5	21/06/2023				
	6	06/07/2023				
	1	11/04/2023				
	2	27/04/2023				
2023LEN0001	3	16/05/2023	Lena	congostinas	-5,76927636	43,09477046
2023LLN0001	4	30/05/2023		congostinas	3,70327030	43,03477040
	5	15/06/2023				
	6	30/06/2023				
	1	10/04/2023				
	2	26/04/2023				
2023LLA0005	3	15/05/2023	Llanes	Llanes	_4 01300493	43,38187346
2023LLA0003	4	25/05/2023	Lianes	Liailes	-4,91390482	43,38187340
	5	14/06/2023				
	6	05/07/2023				
	1	10/04/2023				
	2	26/04/2023				
2023LLA0006	3	10/05/2023	Llanes	Llanes	-4,66443088	43,37963403
2023[[7,0000	4	25/05/2023	Lianes	Lianes	4,00443000	43,37303403
	5	14/06/2023				
	6	05/07/2023				
	1	07/04/2023				
	2	24/04/2023				
2023LRA0002	3	08/05/2023	23 Llanera	Ronielles	-5 90686396	43 45234863
202311/40002	4	26/05/2023		Bonielles	-5,90686396	43,45234863
	5	08/06/2023				
	6	22/06/2023				

Tabla 15. Continuación.

Estación	Muestreo	Fecha	Municipio	Lugar	Longitud	Latitud
	1	11/04/2023				
	2	24/04/2023				
20221 0 4 0002	3	08/05/2023	Hanara	Davida	F 7077404	42 45520607
2023LRA0003	4	26/05/2023	Llanera	Pruvia	-5,7877494	43,45539607
	5	08/06/2023				
	6	22/06/2023				
	1	11/04/2023				
	2	27/04/2023				
2023MIE0001	3	16/05/2023	Mieres	Bustiello	-5 76765396	43,18594653
2025111120001	4	30/05/2023	WHETES	Bustieno	3,70703330	43,10334033
	5	15/06/2023				
	6	30/06/2023				
	1	11/04/2023				
	2	25/04/2023		El Tarronal		
2023MIE0002	3	09/05/2023	Mieres		-5 77/13353/	43,27326035
2023111120002	4	30/05/2023	WHETES		3,77433334	+3,27320033
	5	21/06/2023				
	6	06/07/2023				
	1	11/04/2023				
	2	24/04/2023				
2023MOR0001	3	08/05/2023	Morcín	La Llorera	-5.89328729	43,27374711
2023110110001	4	23/05/2023		La Lioi ei a	3,03320723	13,27371711
	5	08/06/2023				
	6	28/06/2023				
	1	04/04/2023				
	2	26/04/2023				
2023NAR0001	3	10/05/2023	Cangas del	Vegalapiedra	-6.51031237	43,16550363
	4	26/05/2023	Narcea	- Garapian a	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
	5	14/06/2023				
	6	05/07/2023				
	1	04/04/2023				
	2	28/04/2023				
2023NAR0002	3	12/05/2023	Cangas del	Larna	-6,6180376	43,07233532
	4	30/05/2023	Narcea		,	,
	5	16/06/2023				
	6	04/07/2023				
	1	04/04/2023				
	2	28/04/2023				
2023NAR0003	3	12/05/2023	Cangas del	Larón	-6,62450071	42,98032198
	4	30/05/2023	Narcea	LdIUII		1 42,98032198
	5	16/06/2023				
	6	04/07/2023				

Tabla 15. Continuación.

Estación	Muestreo	Fecha	Municipio	Lugar	Longitud	Latitud
	1	13/04/2023				
	2	02/05/2023				
2023NAV0002	3	17/05/2023	Nava	Llames Alto	E E212E001	43,37062774
2023NAV0002	4	29/05/2023	INava	Liailles Aito	-3,33123661	43,37002774
	5	13/06/2023				
	6	29/06/2023				
	1	12/04/2023				
	2	27/04/2023				
2023NIA0001	3	08/05/2023	Navia	Alto de	-6,64744198	43,5169888
2023NIA0001	4	25/05/2023	Ivavia	Bobia	-0,04744138	43,3103888
	5	12/06/2023				
	6	05/07/2023				
	1	13/04/2023				
	2	02/05/2023	—	C18 Zardon		
2023ONI0002	3	15/05/2023	Cangas de		-5,036809	43,37999371
202301110002	4	29/05/2023	Onís		-3,030809	43,37999371
	5	13/06/2023				
	6	29/06/2023				
	1	13/04/2023				
	2	02/05/2023				
2023ONI0003	3	15/05/2023	Onís	C17 Renault	E 16277E02	43,37701168
202301110003	4	29/05/2023		C17 Kellault	-3,10277393	43,37701108
	5	13/06/2023				
	6	29/06/2023				
	1	13/04/2023				
	2	28/04/2023				
2023OVI0001	3	18/05/2023	Oviedo	La Lloral	E 00242020	43,36144753
2023010001	4	05/06/2023	Oviedo	La Liui ai	-5,90343039	43,30144733
	5	21/06/2023				
	6	06/07/2023				
	1	12/04/2023				
	2	02/05/2023				
2023PIL0002	3	17/05/2023	Piloña	C16	-5 29476547	43,37565745
2023F1L0002	4	29/05/2023	Filoria	CIO	-3,28470347	43,37303743
	5	13/06/2023				
	6	29/06/2023				
	1	12/04/2023				
	2	02/05/2023				
2022011 0002	3	15/05/2023	Piloña	C15 Los	E 40000674	42 27002074
2023PIL0003	4	29/05/2023	riiona	Rebollalinos	-5,40980671	45,5/0929/1
	5	13/06/2023				
	6	29/06/2023				

Tabla 15. Continuación.

Estación	Muestreo	Fecha	Municipio	Lugar	Longitud	Latitud
	1	12/04/2023				
	2	02/05/2023				
20220010004	3	15/05/2023	Donge	Г 1 Г	E 1E 427204	42 10711000
2023PON0001	4	29/05/2023	Ponga	E 15	-5,1543/391	43,19711889
	5	13/06/2023				
	6	29/06/2023				
	1	31/03/2023				
	2	24/04/2023				
2023PRA0001	3	08/05/2023	Pravia	Corias	-6,13471627	43,44670725
2023PRA0001	4	22/05/2023	Pravia	Corias	-0,134/102/	43,440/0/25
	5	08/06/2023				
	6	22/06/2023				
	1	11/04/2023				
	2	27/04/2023		El rebodello		
2023PRO0001	3	16/05/2023	Proaza		-6,03578065	43,26411816
2023PR00001	4	30/05/2023	PTUdZd		-0,05576005	45,20411610
	5	15/06/2023				
	6	27/06/2023				
	1	10/04/2023				
2023RID0002	2	26/04/2023				
	3	10/05/2023	Ribadedeva	Ribadedeva	1 E111E0E6	43,38745923
2023KID0002	4	25/05/2023	Ribaueueva	Ribaueueva	-4,54115656	45,56745925
	5	13/06/2023				
	6	05/07/2023				
	1	04/04/2023				
	2	28/04/2023				
2023SEO0001	3	12/05/2023	Santa Eulalia	Brañavella	7 00044506	43,23783084
20233E00001	4	30/05/2023	de Oscos	Branavena	-7,00644360	43,23763064
	5	16/06/2023				
	6	04/07/2023				
	1	14/04/2023				
	2	24/04/2023				
2023SIE0004	3	08/05/2023	Siero	Limanes	-5,77669937	43,3671083
20233120004	4	23/05/2023	Siero	javier Alonso	-3,77009937	43,3071083
	5	08/06/2023				
	6	06/07/2023				
	1	14/04/2023				
	2	28/04/2023				
2023SIE0005	3	11/05/2023	Siero	casa Octavio	-5 65570122	43 36884004
202331E0003	4	25/05/2023	31010	casa Octavio	-5,65570123	+3,30004704
	5	08/06/2023				
	6	26/06/2023				

Tabla 15. Continuación.

Estación	Muestreo	Fecha	Municipio	Lugar	Longitud	Latitud
	1	13/04/2023				
2023SIE0006	2	25/04/2023				
	3	09/05/2023	Ciara		F CE040E90	42 45 41 60 60
	4	23/05/2023	Siero	El Monte	-5,65949589	43,45416869
	5	12/06/2023				
	6	28/06/2023				
20220100002	1	31/03/2023		Las Corradas	-6,26900241	43,44359073
	2	24/04/2023				
	3	08/05/2023	Salas			
2023SLS0002	4	29/05/2023	Salas			
	5	14/06/2023				
	6	03/07/2023				
	1	12/04/2023			-6,25640474	43,17023953
	2	04/05/2023				
2023SOM0001	3	18/05/2023	Somiedo	Clavillas		
2023301010001	4	06/06/2023	Somedo	Ciavillas		
	5	16/06/2023				
	6	07/07/2023				
	1	12/04/2023		Gúa	-6,25942726	43,08036732
	2	04/05/2023				
2023SOM0002	3	18/05/2023	Somiedo			
2023301010002	4	06/06/2023				
	5	16/06/2023				
	6	07/07/2023				
	1	12/04/2023		Saliencia	-6,13329671	43,08373096
	2	04/05/2023				
2023SOM0003	3	18/05/2023	Somiedo			
2023301010003	4	06/06/2023	Somedo			
	5	16/06/2023				
	6	07/07/2023				
	1	13/04/2023	Soto del Barco	Carcedo	-6,03124302	43,54279712
	2	25/04/2023				
2023SOT0001	3	09/05/2023				
20233010001	4	23/05/2023				
	5	12/06/2023				
	6	28/06/2023				
2023STA0001	1	11/04/2023	San Tirso de Abres	Los Llanos	-7,1448563	43,41260174
	2	25/04/2023				
	3	10/05/2023				
	4	25/05/2023				
	5	12/06/2023				
	6	04/07/2023				

Tabla 15. Continuación.

Estación	Muestreo	Fecha	Municipio	Lugar	Longitud	Latitud
	1	11/04/2023				
2023TAP0001	2	27/04/2023	Tapia de Casariego	Acevedo		43,51349319
	3	10/05/2023			6 00002022	
	4	25/05/2023			-6,90083932	
	5	12/06/2023				
	6	04/07/2023				
2023TEV0001	1	10/04/2023		ctra campiello	-6,13697201	43,17496308
	2	27/04/2023				
	3	18/05/2023	Teverga			
20231200001	4	06/06/2023	Teverga			
	5	16/06/2023				
	6	30/06/2023				
	1	31/03/2023			-6,39199913	43,34652502
	2	26/04/2023				
2023TIN0228	3	10/05/2023	Tineo	El Crucero		
20231110228	4	26/05/2023	Tilleo	Li Ciuceio		
	5	14/06/2023				
	6	05/07/2023				
	1	04/04/2023		Tuña	-6,37955736	43,26492531
	2	26/04/2023				
2023TIN0285	3	10/05/2023	Tineo			
20231110203	4	26/05/2023				
	5	14/06/2023				
	6	05/07/2023				
	1	04/04/2023	Tineo	Agüera de Carriles	-6,50174506	43,2549929
	2	26/04/2023				
2023TIN0286	3	10/05/2023				
20231110200	4	26/05/2023				
	5	14/06/2023				
	6	05/07/2023				
	1	03/04/2023	Tineo	Sabadel de Troncedo	-6,51615087	43,34356451
	2	26/04/2023				
2023TIN0298	3	10/05/2023				
202311110230	4	26/05/2023				
	5	14/06/2023				
	6	07/07/2023				
2023TIN0316	1	03/04/2023	Tineo	Entrexeito	-6,51730556	43,42935924
	2	25/04/2023				
	3	10/05/2023				
	4	02/06/2023				
	5	21/06/2023				
	6	07/07/2023				

Tabla 15. Continuación.

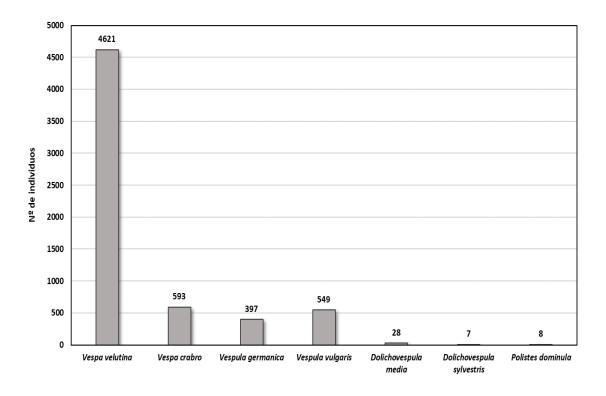

Estación	Muestreo	Fecha	Municipio	Lugar	Longitud	Latitud
2023VAL0002	1	31/03/2023	Valdés			
	2	24/04/2023				
	3	09/05/2023		Colinas	6 20220202	43,44024448
	4	29/05/2023		Collilas	-6,39229283	
	5	13/06/2023				
	6	03/07/2023				
2023VAL0003	1	12/04/2023		San Pelayo de Tahona	-6,40355442	43,52537142
	2	24/04/2023				
	3	08/05/2023	Valdés			
2023 VAL0003	4	29/05/2023	values			
	5	14/06/2023				
	6	05/07/2023				
	1	12/04/2023			-6,52942579	43,52206106
	2	27/04/2023				
2023VAL0004	3	08/05/2023	Valdés	Fontoria		
2023 VAL0004	4	25/05/2023	values	Fontoria		
	5	12/06/2023				
	6	05/07/2023				
	1	12/04/2023		Arcallana- San Martin de Luiña	-6,27713889	43,52728506
	2	28/04/2023				
2023VAL0023	3	09/05/2023	Valdés			
2023 VAL0023	4	29/05/2023				
	5	14/06/2023				
	6	06/07/2023				
	1	11/04/2023		Vegadeo	-7,01774273	43,42186187
	2	25/04/2023				
2023VEG0001	3	10/05/2023	Vegadeo			
2023 V L G G G G G	4	25/05/2023	vegaueo			
	5	12/06/2023				
	6	04/07/2023				
	1	10/04/2023	Villaviciosa	San Félix de Oles	-5,41833278	43,5456677
	2	26/04/2023				
2023VIL0001	3	10/05/2023				
2023 VILUUU1	4	26/05/2023				
	5	12/06/2023				
	6	28/06/2023				
2023VIL0002	1	10/04/2023	Villaviciosa	Solares	-5,40872041	43,46241013
	2	26/04/2023				
	3	10/05/2023				
	4	26/05/2023				
	5	12/06/2023				
	6	28/06/2023				

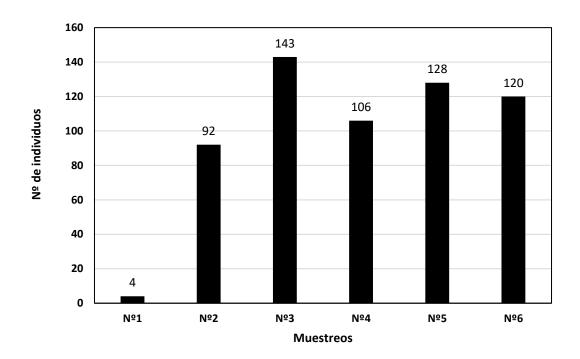
Tabla 15. Continuación.

Estación	Muestreo	Fecha	Municipio	Lugar	Longitud	Latitud
2023VIN0001	1	03/04/2023	Villayón	Masenga	-6,63810186	43,43342993
	2	25/04/2023				
	3	16/05/2023				
	4	02/06/2023				
	5	21/06/2023				
	6	07/07/2023				

2.1 Familia Vespidae

Resultados: Se analizaron un total de 6203 individuos, agrupados en siete especies, donde aquellas con mayor abundancia de individuos resultaron ser la especie invasora *Vespa velutina* y la especie *Vespa crabro*, representando respectivamente el 73,06% y 8,68% del total de individuos de la familia Vespidae capturados en la campaña 2023 (Figura 69).

Figura 69. Número total de individuos de la familia Vespidae capturados durante la campaña 2023.


2.1.1 *Vespa crabro*

El avispón europeo (*Vespa crabro* Linnaeus, 1758) es una especie de insecto himenóptero de la familia Vespidae (Matsuura & Yamane, 1990). Es una avispa de gran tamaño donde las reinas pueden llegar a medir entre 25 y 35 mm siendo las obreras más pequeñas. Su distribución geográfica se extiende desde Europa a Asia, sin embargo, recientemente ha sido introducida en Norteamérica y Sudamérica (Landolt et al, 2010; Bass et al, 2022). El avispón europeo es un depredador generalista de insectos de mediano tamaño como otros himenópteros y dípteros (Matsuura & Yamane, 1990) (Figura 70).

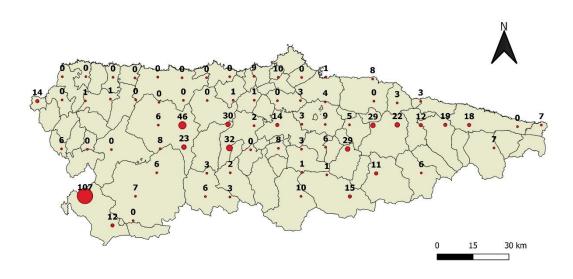


Figura 70. Obrera de Vespa Crabro.

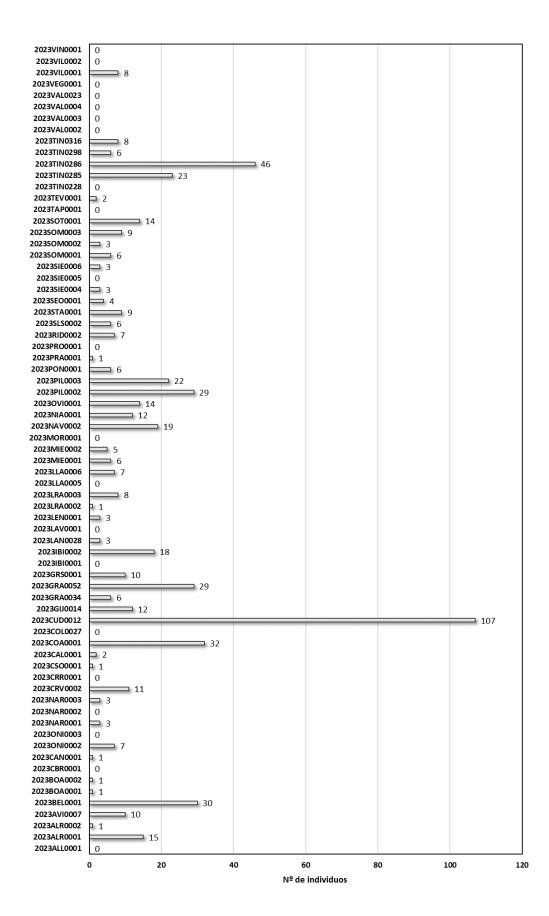

Resultados: Se analizaron un total de 593 individuos de *Vespa crabro* en la campaña 2023 (Figura 71), donde las estaciones con mayor abundancia de individuos de *Vespa crabro* resultaron ser el 2023CUD0012 (107 individuos), 2023TIN0286 (46 individuos) y 2023COA0001 (32 individuos) representando respectivamente el 18,14%, 7,76% y 5,40% del total de individuos de *Vespa crabro* capturados en la campaña 2023 (Figura 72-73; Tabla 16). El muestreo con mayor número de individuos atrapados fue el №3 con un total de 143 individuos de *Vespa crabro*, representando el 24,11% del total de las capturas. Se ha comprobado su presencia en 50 de las 71 (70,42%) estaciones muestreadas en la campaña 2023. El número medio de individuos de *Vespa crabro* por estación resultó en 8,35 ± 15,11 (Media ± Desviación típica).

Figura 71. Número total de individuos de *Vespa crabro* capturados en las diferentes épocas de muestreo realizadas en la campaña 2023.

Figura 72. Distribución geográfica del total de las capturas de *Vespa crabro* capturadas en las diferentes estaciones muestreadas durante la campaña 2023.

Figura 73. Número total de individuos de *Vespa velutina* capturados en las diferentes estaciones muestreadas durante la campaña 2023.

Tabla 16. Resultados de la captura total de *Vespa crabro* en los 6 muestreos de cada una de las estaciones muestreadas durante la campaña 2023. Se indica el número medio de individuos por estación, desviación estándar (DS) y el porcentaje de *Vespa crabro* capturadas sobre el número total de *Vespa crabro* atrapados durante la campaña 2023. En rojo las estaciones donde no se han capturado *Vespa crabro*.

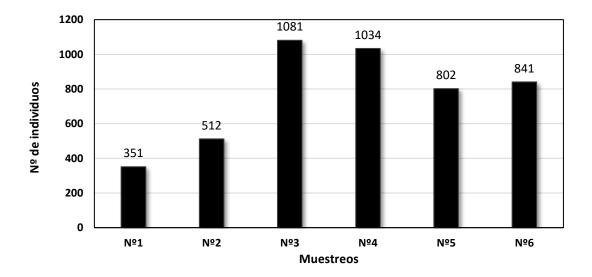
Estaciones	Nº1	Nº 2	Nº 3	Nº 4	№ 5	Nº 6	∑TOTAL	MEDIA	DS	%TOTAL
2023ALL0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023ALR0001	0	2	8	1	2	2	15	2,50	2,81	2,53%
2023ALR0002	0	1	0	0	0	0	1	0,17	0,41	0,17%
2023AVI0007	0	0	5	3	2	0	10	1,67	2,07	1,69%
2023BEL0001	0	22	4	2	1	1	30	5,00	8,44	5,06%
2023BOA0001	0	0	0	0	1	0	1	0,17	0,41	0,17%
2023BOA0002	0	0	0	0	0	1	1	0,17	0,41	0,17%
2023CBR0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023CAN0001	0	0	0	1	0	0	1	0,17	0,41	0,17%
2023ONI0002	0	0	5	0	2	0	7	1,17	2,04	1,18%
2023ONI0003	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023NAR0001	0	0	2	0	1	0	3	0,50	0,84	0,51%
2023NAR0002	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023NAR0003	0	0	0	2	0	1	3	0,50	0,84	0,51%
2023CRV0002	0	0	3	6	0	2	11	1,83	2,40	1,85%
2023CRR0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023CSO0001	0	0	1	0	0	0	1	0,17	0,41	0,17%
2023CAL0001	1	0	1	0	0	0	2	0,33	0,52	0,34%
2023COA0001	0	9	4	4	9	6	32	5,33	3,44	5,40%
2023COL0027	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023CUD0012	0	4	15	28	36	24	107	17,83	14,06	18,04%
2023GIJ0014	0	0	6	5	0	1	12	2,00	2,76	2,02%
2023GRA0034	0	4	1	1	0	0	6	1,00	1,55	1,01%
2023GRA0052	1	7	14	3	3	1	29	4,83	5,00	4,89%

Tabla 16. Continuación.

Estaciones	Nº1	Nº 2	Nº 3	Nº 4	Nº 5	Nº 6	∑TOTAL	MEDIA	DS	%TOTAL
2023GRS0001	0	1	6	2	1	0	10	1,67	2,25	1,69%
2023IBI0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023IBI0002	0	0	0	0	2	16	18	3,00	6,42	3,04%
2023LAN0028	0	0	0	1	0	2	3	0,50	0,84	0,51%
2023LAV0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023LEN0001	0	1	1	0	1	0	3	0,50	0,55	0,51%
2023LRA0002	0	0	0	0	0	1	1	0,17	0,41	0,17%
2023LRA0003	0	0	1	1	0	6	8	1,33	2,34	1,35%
2023LLA0005	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023LLA0006	0	0	4	1	1	1	7	1,17	1,47	1,18%
2023MIE0001	0	0	1	3	2	0	6	1,00	1,26	1,01%
2023MIE0002	0	0	1	0	1	3	5	0,83	1,17	0,84%
2023MOR0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023NAV0002	0	6	9	3	1	0	19	3,17	3,66	3,20%
2023NIA0001	0	0	6	0	3	3	12	2,00	2,45	2,02%
2023OVI0001	0	0	0	1	7	6	14	2,33	3,27	2,36%
2023PIL0002	0	15	4	4	2	4	29	4,83	5,23	4,89%
2023PIL0003	2	12	3	2	1	2	22	3,67	4,13	3,71%
2023PON0001	0	2	0	0	4	0	6	1,00	1,67	1,01%
2023PRA0001	0	0	1	0	0	0	1	0,17	0,41	0,17%
2023PRO0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023RID0002	0	0	0	0	4	3	7	1,17	1,83	1,18%
2023SLS0002	0	0	1	3	2	0	6	1,00	1,26	1,01%
2023STA0001	0	0	2	2	2	3	9	1,50	1,22	1,52%
2023SEO0001	0	0	0	2	0	2	4	0,67	1,03	0,67%
2023SIE0004	0	0	0	0	0	3	3	0,50	1,22	0,51%

Tabla 16. Continuación.

Estaciones	Nº1	Nº 2	Nº 3	Nº 4	Nº 5	Nº 6	∑TOTAL	MEDIA	DS	%TOTAL
2023SIE0005	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023SIE0006	0	1	1	1	0	0	3	0,50	0,55	0,51%
2023SOM0001	0	0	0	2	4	0	6	1,00	1,67	1,01%
2023SOM0002	0	1	0	1	1	0	3	0,50	0,55	0,51%
2023SOM0003	0	0	3	0	3	3	9	1,50	1,64	1,52%
2023SOT0001	0	1	0	1	8	4	14	2,33	3,14	2,36%
2023TAP0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023TEV0001	0	1	0	0	1	0	2	0,33	0,52	0,34%
2023TIN0228	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023TIN0285	0	0	17	4	1	1	23	3,83	6,62	3,88%
2023TIN0286	0	0	11	11	14	10	46	7,67	6,09	7,76%
2023TIN0298	0	0	0	0	3	3	6	1,00	1,55	1,01%
2023TIN0316	0	2	2	3	1	0	8	1,33	1,21	1,35%
2023VAL0002	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023VAL0003	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023VAL0004	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023VAL0023	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023VEG0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023VIL0001	0	0	0	2	1	5	8	1,33	1,97	1,35%
2023VIL0002	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023VIN0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
TOTAL	4	92	143	106	128	120	593			
Media	0,06	1,30	2,01	1,49	1,80	1,69	8,35			
DS	0,29	3,69	3,70	3,69	4,76	3,75	15,11			
%Total	0,67%	15,51%	24,11%	17,88%	21,59%	20,24%	100,00%			


2.1.2 *Vespa velutina*

La avispa o avispón asiático (*Vespa velutina* Lepeletier, 1836), es una especie de avispa originaria del continente asiático perteneciente a la familia Vespidae. Esta especie ha sido introducida en Europa accidentalmente alrededor del año 2004, detectándose por primera vez en Francia (Haxaire et al, 2006; Villemant et al, 2006). A partir de su introducción en Francia, ha logrado colonizar rápidamente otros países como España, Portugal, Bélgica, Italia, el Reino Unido, Holanda y Alemania. La avispa asiática es un depredador generalista de insectos de mediano tamaño como otros himenópteros y dípteros, mostrando especial predilección por las abejas de la miel (*Apis* spp.) (Haxaire et a, 2006; Villemant et al, 2006). Tras su rápida y exitosa naturalización ha desarrollado un claro comportamiento invasor, afectando principalmente a las poblaciones de abejas melíferas europeas (*Apis mellifera* Linnaeus, 1758) con las consiguientes repercusiones, económicas y ecológicas (Monceau et al, 2014). De forma paralela, al igual que otros véspidos, su picadura puede suponer problemas serios a las personas alérgicas (Haro et al, 2010) (Figura 74).

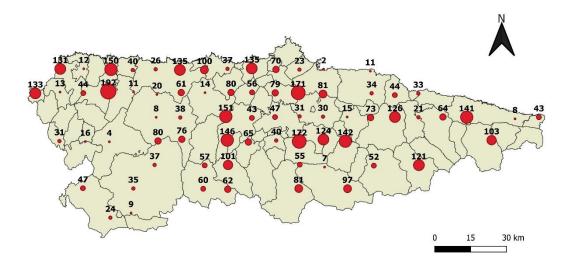


Figura 74. Obrera de Vespa velutina nigrithorax.

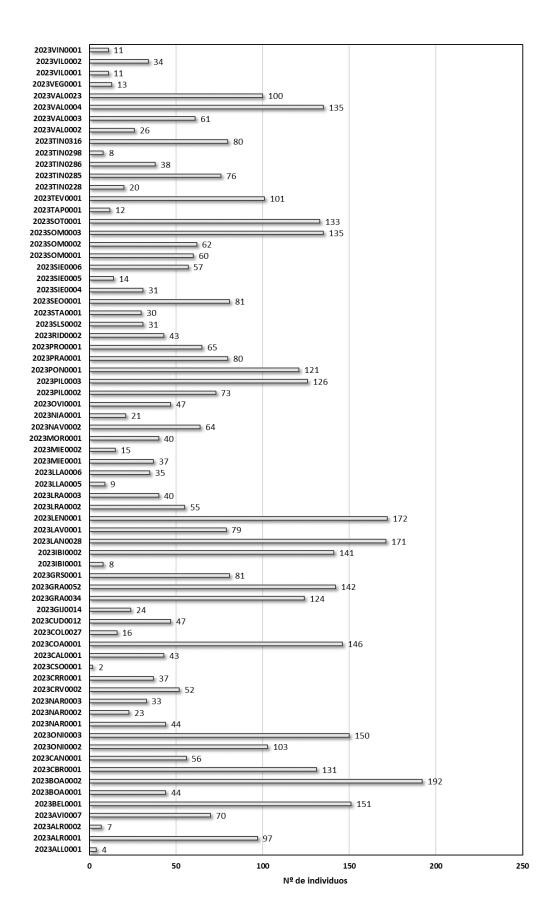

Resultados: Se analizaron un total de 4621 individuos de *Vespa velutina* en la campaña 2023 (Figura 75), donde las estaciones con mayor abundancia de individuos de *Vespa velutina* resultaron ser el 2023BOA0002 (192 individuos), 2023LEN0001 (172 individuos) y 2023LAN0028 (171 individuos) representando respectivamente el 4,15%, 3,72% y 3,70% del total de individuos de *Vespa velutina* capturados en la campaña 2023 (Figura 76-77; Tabla 17). El muestreo con mayor número de individuos atrapados fue el Nº3 con un total de 1081 individuos de *Vespa velutina*, representando el 23,39% del total de las capturas. Se ha comprobado su presencia en todas estaciones muestreadas en la campaña 2023. El número medio de individuos de *Vespa velutina* por estación resultó en 65,08 ± 49,07 (Media ± Desviación típica).

Figura 75. Número total de individuos de *Vespa velutina* capturados en las diferentes épocas de muestreo realizadas en la campaña 2023.

Figura 76. Distribución geográfica del total de las capturas de *Vespa velutina* capturadas en las diferentes estaciones muestreadas durante la campaña 2023.

Figura 77. Número total de individuos de *Vespa velutina* capturados en las diferentes estaciones muestreadas durante la campaña 2023.

Tabla 17. Resultados de la captura total de *Vespa velutina* en los 6 muestreos de cada una de las estaciones muestreadas durante la campaña 2023. Se indica el número medio de individuos por estación, desviación estándar (DS) y el porcentaje de *Vespa velutina* capturadas sobre el número total de *Vespa velutina* atrapados durante la campaña 2023. En rojo las estaciones donde no se han capturado *Vespa velutina*.

ESTACIONES	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	∑TOTAL	MEDIA	DS	%TOTAL
2023ALL0001	0	3	0	0	1	0	4	0,67	1,21	0,09%
2023ALR0001	3	23	28	11	25	7	97	16,17	10,48	2,10%
2023ALR0002	0	1	1	1	4	0	7	1,17	1,47	0,15%
2023AVI0007	22	2	16	13	8	9	70	11,67	6,95	1,51%
2023BEL0001	6	25	37	29	34	20	151	25,17	11,20	3,27%
2023BOA0001	0	0	0	3	11	30	44	7,33	11,89	0,95%
2023BOA0002	24	14	74	26	50	4	192	32,00	25,67	4,15%
2023CBR0001	2	9	7	22	31	60	131	21,83	21,54	2,83%
2023CAN0001	1	4	6	14	18	13	56	9,33	6,62	1,21%
2023ONI0002	20	10	26	11	27	9	103	17,17	8,23	2,23%
2023ONI0003	22	21	42	18	47	0	150	25,00	17,16	3,25%
2023NAR0001	2	2	24	16	0	0	44	7,33	10,17	0,95%
2023NAR0002	0	9	0	9	3	2	23	3,83	4,17	0,50%
2023NAR0003	0	2	3	12	13	3	33	5,50	5,54	0,71%
2023CRV0002	0	10	12	22	4	4	52	8,67	7,87	1,13%
2023CRR0001	5	2	14	5	5	6	37	6,17	4,07	0,80%
2023CSO0001	1	0	1	0	0	0	2	0,33	0,52	0,04%
2023CAL0001	3	9	9	7	7	8	43	7,17	2,23	0,93%
2023COA0001	4	21	22	48	20	31	146	24,33	14,51	3,16%
2023COL0027	0	6	8	1	1	0	16	2,67	3,44	0,35%
2023CUD0012	0	18	13	6	3	7	47	7,83	6,62	1,02%
2023GIJ0014	0	1	6	14	3	0	24	4,00	5,40	0,52%
2023GRA0034	40	15	42	23	2	2	124	20,67	17,68	2,68%
2023GRA0052	43	26	44	21	5	3	142	23,67	17,75	3,07%

Tabla 17. Continuación.

ESTACIONES	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	∑TOTAL	MEDIA	DS	%TOTAL
2023GRS0001	0	9	32	18	15	7	81	13,50	11,04	1,75%
2023IBI0001	0	0	1	4	3	0	8	1,33	1,75	0,17%
2023IBI0002	3	17	56	34	18	13	141	23,50	18,81	3,05%
2023LAN0028	1	6	20	34	28	82	171	28,50	29,08	3,70%
2023LAV0001	1	1	15	22	22	18	79	13,17	9,79	1,71%
2023LEN0001	1	8	48	80	32	3	172	28,67	31,21	3,72%
2023LRA0002	0	1	11	25	14	4	55	9,17	9,54	1,19%
2023LRA0003	0	5	19	7	4	5	40	6,67	6,47	0,87%
2023LLA0005	0	2	4	1	1	1	9	1,50	1,38	0,19%
2023LLA0006	0	6	15	5	7	2	35	5,83	5,19	0,76%
2023MIE0001	1	7	14	2	8	5	37	6,17	4,71	0,80%
2023MIE0002	2	3	2	4	4	0	15	2,50	1,52	0,32%
2023MOR0001	1	1	2	2	8	26	40	6,67	9,83	0,87%
2023NAV0002	2	2	22	16	8	14	64	10,67	8,07	1,38%
2023NIA0001	4	1	9	2	4	1	21	3,50	3,02	0,45%
2023OVI0001	0	7	13	11	11	5	47	7,83	4,83	1,02%
2023PIL0002	13	17	15	20	3	5	73	12,17	6,77	1,58%
2023PIL0003	30	35	30	21	3	7	126	21,00	13,25	2,73%
2023PON0001	4	12	44	20	38	3	121	20,17	17,37	2,62%
2023PRA0001	2	3	17	13	9	36	80	13,33	12,50	1,73%
2023PRO0001	4	9	21	30	1	0	65	10,83	12,12	1,41%
2023RID0002	0	2	13	7	19	2	43	7,17	7,47	0,93%
2023SLS0002	1	15	3	5	4	3	31	5,17	5,00	0,67%
2023STA0001	0	0	4	10	11	5	30	5,00	4,73	0,65%
2023SEO0001	2	8	5	3	1	62	81	13,50	23,89	1,75%
2023SIE0004	0	0	17	2	3	9	31	5,17	6,68	0,67%

Tabla 17. Continuación.

ESTACIONES	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	∑TOTAL	MEDIA	DS	%TOTAL
2023SIE0005	0	0	4	1	1	8	14	2,33	3,14	0,30%
2023SIE0006	1	14	3	19	9	11	57	9,50	6,75	1,23%
2023SOM0001	2	4	0	38	6	10	60	10,00	14,14	1,30%
2023SOM0002	1	15	8	26	8	4	62	10,33	9,00	1,34%
2023SOM0003	12	0	37	44	22	20	135	22,50	16,10	2,92%
2023SOT0001	0	5	37	23	36	32	133	22,17	16,09	2,88%
2023TAP0001	1	0	1	0	2	8	12	2,00	3,03	0,26%
2023TEV0001	26	26	0	30	11	8	101	16,83	12,14	2,19%
2023TIN0228	0	7	5	1	7	0	20	3,33	3,39	0,43%
2023TIN0285	1	0	18	33	5	19	76	12,67	12,94	1,64%
2023TIN0286	3	6	11	9	5	4	38	6,33	3,08	0,82%
2023TIN0298	0	1	0	0	5	2	8	1,33	1,97	0,17%
2023TIN0316	1	4	30	27	1	17	80	13,33	13,19	1,73%
2023VAL0002	0	2	7	0	17	0	26	4,33	6,77	0,56%
2023VAL0003	1	1	7	12	7	33	61	10,17	11,94	1,32%
2023VAL0004	21	12	5	10	36	51	135	22,50	17,72	2,92%
2023VAL0023	11	4	6	14	0	65	100	16,67	24,20	2,16%
2023VEG0001	0	0	8	0	3	2	13	2,17	3,13	0,28%
2023VIL0001	0	0	1	2	4	4	11	1,83	1,83	0,24%
2023VIL0002	0	1	6	9	15	3	34	5,67	5,65	0,74%
2023VIN0001	0	0	0	6	1	4	11	1,83	2,56	0,24%
TOTAL	351	512	1081	1034	802	841	4621			
Media	4,94	7,21	15,23	14,56	11,30	11,85	65,08			
DS	9,50	7,91	15,55	14,08	11,93	17,14	49,07			
%Total	7,60%	11,08%	23,39%	22,38%	17,36%	18,20%	100,00%			

2.1.3 Vespula germanica

La avispa alemana (Vespula germanica) es una especie de insecto himenóptero social de la familia Vespidae. Esta especie es de origen mediterráneo, abarcando Europa, norte de África, y zonas templadas de Asia (Matsuura & Yamane, 1990). Actualmente ha invadido Norteamérica, Sudamérica, sur de Australia y Nueva Zelanda. Se trata de individuos de pequeño tamaño, oscilando entre los 12 y los 17 mm de longitud en la casta obrera, llegando a superar los 20 mm en las reinas. Se puede encontrar en todo tipo de ambientes, desde zonas agrícolas, bosques naturales, plantaciones y matorrales hasta áreas urbanas donde construyen sus nidos en el suelo, aunque también pueden formar nidos aéreos en las ramas de los árboles, techos y fachadas de edificios (Clapperton et al, 1989; Steinmetz & Schmolz, 2005). Son depredadores oportunistas y carroñeros, que poseen una amplia dieta que varía de acuerdo con los requerimientos del nido, así durante los períodos de altos requerimientos energéticos (p. ej., durante la construcción del nido o con el descenso de las temperaturas) su dieta consiste principalmente en carbohidratos, siendo el néctar, la miel, las frutas maduras y las secreciones azucaradas de pulgones (melaza) son sus fuentes más habituales; mientras que el consumo de proteínas, que obtienen mediante la caza de artrópodos (como moscas, mosquitos, orugas) y carroña, es mayor cuando las obreras deben alimentar a las larvas y crías (Clapperton et al, 1989; Matsuura & Yamane, 1990; Steinmetz & Schmolz, 2005) (Figura 78).

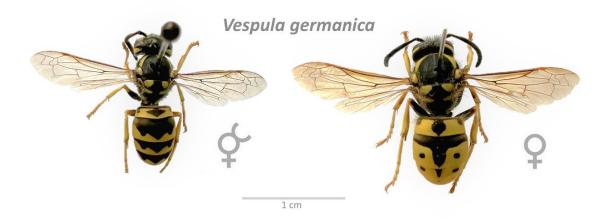
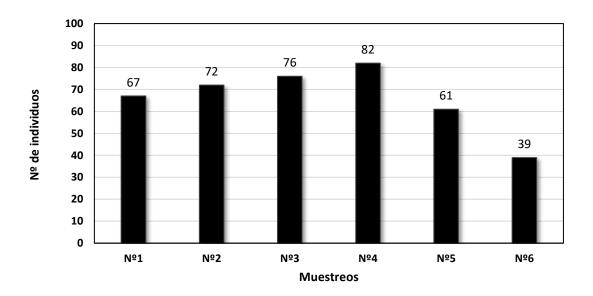
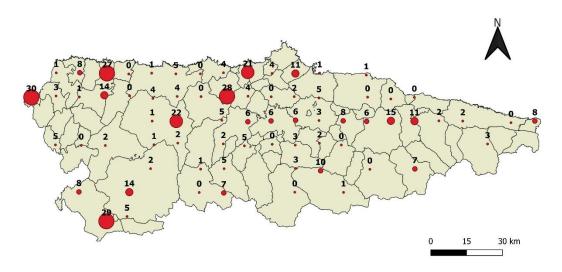




Figura 78. Obrera (izquierda) y reina (derecha) de Vespula germánica.

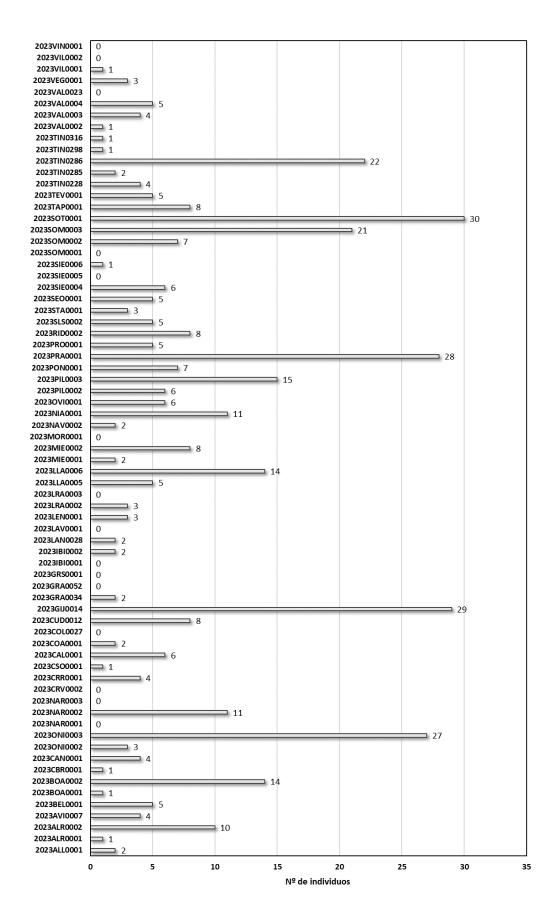

Resultados: Se analizaron un total de 397 individuos de *Vespula germanica* en la campaña 2023 (Figura 79), donde las estaciones con mayor abundancia de individuos de *Vespula germanica* resultaron ser el 2023SOT0001 (30 individuos), 2023GIJ0014 (29 individuos) y 2023PRA0001 (28 individuos), representando respectivamente el 7,56%, 7,30% y 7,05% del total de individuos de *Vespula germanica* capturados en la campaña 2023 (Figura 80-81; Tabla 18). El muestreo con mayor número de individuos atrapados fue el Nº4 con un total de 82 individuos de *Vespula germanica*, representando el 20,65% del total de las capturas. Se ha comprobado su presencia en 56 de las 71 (78,87%) estaciones muestreadas en la campaña 2023. El número medio de individuos de *Vespula germanica* por estación resultó en 5,59 ± 7,33 (Media ± Desviación típica).

Figura 79. Número total de individuos de *Vespula germanica* capturados en las diferentes épocas de muestreo realizadas en la campaña 2023.

Figura 80. Distribución geográfica del total de las capturas de *Vespula germanica* capturadas en las diferentes estaciones muestreadas durante la campaña 2023.

Figura 81. Número total de individuos de *Vespula germanica* capturados en las diferentes estaciones muestreadas durante la campaña 2023.

Tabla 18. Resultados de la captura total de *Vespula germanica* en los 6 muestreos de cada una de las estaciones muestreadas durante la campaña 2023. Se indica el número medio de individuos por estación, desviación estándar (DS) y el porcentaje de *Vespula germanica* capturadas sobre el número total de *Vespula germanica* atrapados durante la campaña 2023. En rojo las estaciones donde no se han capturado *Vespula germanica*.

ESTACIONES	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	∑TOTAL	MEDIA	DS	%TOTAL
2023ALL0001	0	0	2	0	0	0	2	0,33	0,82	0,50%
2023ALR0001	0	0	1	0	0	0	1	0,17	0,41	0,25%
2023ALR0002	2	3	2	3	0	0	10	1,67	1,37	2,52%
2023AVI0007	4	0	0	0	0	0	4	0,67	1,63	1,01%
2023BEL0001	0	1	1	1	0	2	5	0,83	0,75	1,26%
2023BOA0001	0	0	0	0	0	1	1	0,17	0,41	0,25%
2023BOA0002	5	2	3	2	2	0	14	2,33	1,63	3,53%
2023CBR0001	1	0	0	0	0	0	1	0,17	0,41	0,25%
2023CAN0001	0	2	0	2	0	0	4	0,67	1,03	1,01%
2023ONI0002	0	1	0	0	1	1	3	0,50	0,55	0,76%
2023ONI0003	5	3	9	4	6	0	27	4,50	3,02	6,80%
2023NAR0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023NAR0002	8	1	0	0	1	1	11	1,83	3,06	2,77%
2023NAR0003	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023CRV0002	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023CRR0001	0	0	3	1	0	0	4	0,67	1,21	1,01%
2023CSO0001	1	0	0	0	0	0	1	0,17	0,41	0,25%
2023CAL0001	1	0	0	0	2	3	6	1,00	1,26	1,51%
2023COA0001	0	2	0	0	0	0	2	0,33	0,82	0,50%
2023COL0027	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023CUD0012	0	4	1	2	0	1	8	1,33	1,51	2,02%
2023GIJ0014	0	3	11	7	6	2	29	4,83	3,97	7,30%
2023GRA0034	1	0	1	0	0	0	2	0,33	0,52	0,50%
2023GRA0052	0	0	0	0	0	0	0	0,00	0,00	0,00%

Tabla 18. Continuación.

ESTACIONES	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	∑TOTAL	MEDIA	DS	%TOTAL
2023GRS0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023IBI0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023IBI0002	0	0	0	2	0	0	2	0,33	0,82	0,50%
2023LAN0028	0	0	0	1	1	0	2	0,33	0,52	0,50%
2023LAV0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023LEN0001	1	2	0	0	0	0	3	0,50	0,84	0,76%
2023LRA0002	0	0	0	0	1	2	3	0,50	0,84	0,76%
2023LRA0003	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023LLA0005	1	1	2	1	0	0	5	0,83	0,75	1,26%
2023LLA0006	0	4	4	3	3	0	14	2,33	1,86	3,53%
2023MIE0001	0	0	1	1	0	0	2	0,33	0,52	0,50%
2023MIE0002	2	1	5	0	0	0	8	1,33	1,97	2,02%
2023MOR0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023NAV0002	0	1	0	0	0	1	2	0,33	0,52	0,50%
2023NIA0001	1	1	2	1	2	4	11	1,83	1,17	2,77%
2023OVI0001	0	2	2	0	2	0	6	1,00	1,10	1,51%
2023PIL0002	1	1	0	1	0	3	6	1,00	1,10	1,51%
2023PIL0003	4	5	1	4	0	1	15	2,50	2,07	3,78%
2023PON0001	0	0	1	0	6	0	7	1,17	2,40	1,76%
2023PRA0001	1	1	4	13	5	4	28	4,67	4,41	7,05%
2023PRO0001	0	2	0	3	0	0	5	0,83	1,33	1,26%
2023RID0002	0	0	2	2	4	0	8	1,33	1,63	2,02%
2023SLS0002	0	3	1	1	0	0	5	0,83	1,17	1,26%
2023STA0001	0	0	0	0	1	2	3	0,50	0,84	0,76%
2023SEO0001	3	1	0	0	0	1	5	0,83	1,17	1,26%
2023SIE0004	2	1	1	1	0	1	6	1,00	0,63	1,51%
2023SIE0005	0	0	0	0	0	0	0	0,00	0,00	0,00%

Tabla 18. Continuación.

ESTACIONES	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	∑TOTAL	MEDIA	DS	%TOTAL
2023SIE0006	0	1	0	0	0	0	1	0,17	0,41	0,25%
2023SOM0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023SOM0002	0	3	0	3	1	0	7	1,17	1,47	1,76%
2023SOM0003	1	0	0	10	7	3	21	3,50	4,14	5,29%
2023SOT0001	10	7	4	3	4	2	30	5,00	2,97	7,56%
2023TAP0001	4	1	0	0	1	2	8	1,33	1,51	2,02%
2023TEV0001	1	3	0	0	1	0	5	0,83	1,17	1,26%
2023TIN0228	0	2	2	0	0	0	4	0,67	1,03	1,01%
2023TIN0285	0	0	0	2	0	0	2	0,33	0,82	0,50%
2023TIN0286	4	4	5	7	2	0	22	3,67	2,42	5,54%
2023TIN0298	0	0	0	0	1	0	1	0,17	0,41	0,25%
2023TIN0316	0	0	1	0	0	0	1	0,17	0,41	0,25%
2023VAL0002	0	1	0	0	0	0	1	0,17	0,41	0,25%
2023VAL0003	0	0	2	0	0	2	4	0,67	1,03	1,01%
2023VAL0004	1	1	2	1	0	0	5	0,83	0,75	1,26%
2023VAL0023	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023VEG0001	1	1	0	0	1	0	3	0,50	0,55	0,76%
2023VIL0001	1	0	0	0	0	0	1	0,17	0,41	0,25%
2023VIL0002	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023VIN0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
TOTAL	67	72	76	82	61	39	397			
Media	0,94	1,01	1,07	1,15	0,86	0,55	5,59			
DS	1,89	1,45	2,01	2,34	1,69	1,03	7,33			
%Total	16,88%	18,14%	19,14%	20,65%	15,37%	9,82%	100,00%			

2.1.4 *Vespula vulgaris*

La avispa común (*Vespula vulgaris*) es una especie de insecto himenóptero de la familia Vespidae que se encuentra en gran parte de Eurasia, se ha introducido a Australia y Nueva Zelanda (Matsuura & Yamane, 1990). Al igual que *V. germanica*, se trata de una especie de pequeñas dimensiones, oscilando entre los 12 y los 16 mm de longitud en la casta obrera, llegando a superar los 20 mm en las reinas. Se puede encontrar en todo tipo de ambientes, desde zonas agrícolas, bosques naturales, plantaciones y matorrales hasta áreas urbanas donde construyen sus nidos en el suelo, aunque también pueden formar nidos aéreos en las ramas de los árboles, techos y fachadas de edificios (Steinmetz & Schmolz, 2005). Se puede encontrar en todo tipo de ambientes desde bosques naturales y plantaciones hasta áreas urbanas donde construyen sus nidos preferentemente en el suelo, aunque también pueden formar nidos en los árboles, techos y fachadas de edificios (Steinmetz & Schmolz, 2005). Presenta los mismos requerimientos y hábitos alimenticios que su congénere *V. germanica* (Clapperton et al, 1989) (Figura 82).

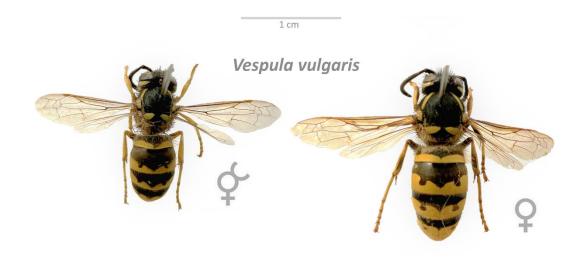
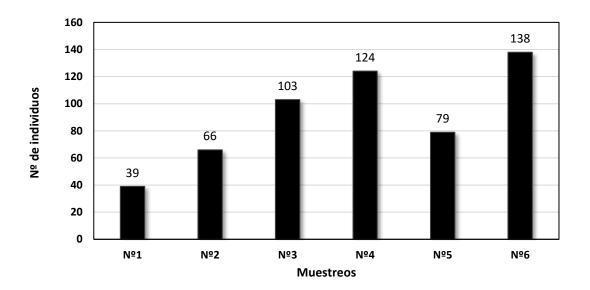



Figura 82. Obrera (izquierda) y reina (derecha) de Vespula vulgaris.

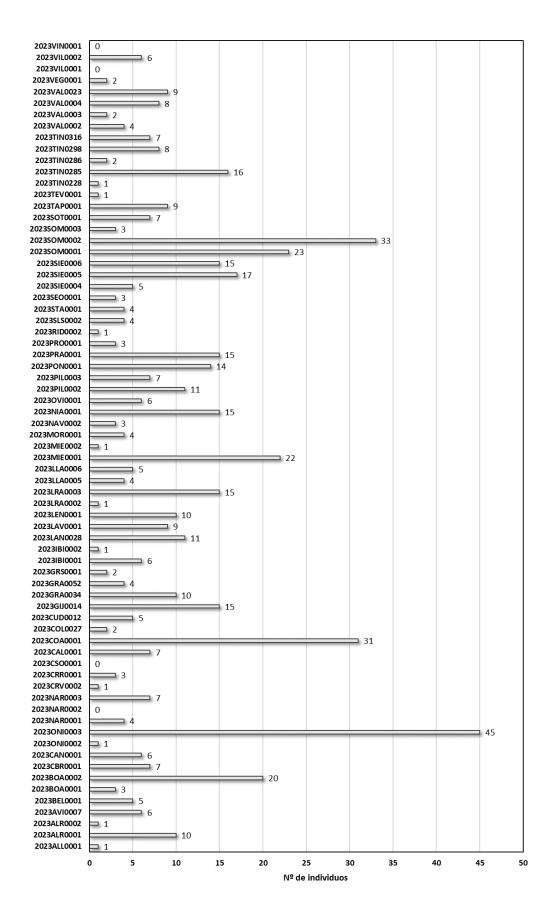

Resultados: Se analizaron un total de 549 individuos de *Vespula vulgaris* en la campaña 2023 (Figura 83), donde las estaciones con mayor abundancia de individuos de *Vespula vulgaris* resultaron ser el 2023ONI0003 (45 individuos), 2023SOM0002 (33 individuos) y 2023COA0001 (31 individuos) representando respectivamente el 8,20%, 6,01%, y 5,65% del total de individuos de *Vespula vulgaris* capturados en la campaña 2023 (Figura 84-85; Tabla 19). El muestreo con mayor número de individuos atrapados fue el Nº6 con un total de 138 individuos de *Vespula vulgaris*, representando el 25,14% del total de las capturas. Se ha comprobado su presencia en 67 de las 71 (94,37%) estaciones muestreadas en la campaña 2023. El número medio de individuos de *Vespula vulgaris* por estación resultó en 7,73±8,27 (Media ± Desviación típica).

Figura 83. Número total de individuos de *Vespula vulgaris* capturados en las diferentes épocas de muestreo realizadas en la campaña 2023.

Figura 84. Distribución geográfica del total de las capturas de *Vespula vulgaris* capturadas en las diferentes estaciones muestreadas durante la campaña 2023.

Figura 85. Número total de individuos de *Vespula vulgaris* capturados en las diferentes estaciones muestreadas durante la campaña 2023.

Tabla 19. Resultados de la captura total de *Vespula vulgaris* en los 6 muestreos de cada una de las estaciones muestreadas durante la campaña 2023. Se indica el número medio de individuos por estación, desviación estándar (DS) y el porcentaje de *Vespula vulgaris* capturadas sobre el número total de *Vespula vulgaris* atrapados durante la campaña 2023. En rojo las estaciones donde no se han capturado *Vespula vulgaris*.

ESTACIONES	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	∑TOTAL	MEDIA	DS	%TOTAL
2023ALL0001	0	0	0	0	1	0	1	0,17	0,41	0,18%
2023ALR0001	0	2	5	2	1	0	10	1,67	1,86	1,82%
2023ALR0002	0	1	0	0	0	0	1	0,17	0,41	0,18%
2023AVI0007	4	0	0	0	2	0	6	1,00	1,67	1,09%
2023BEL0001	1	2	0	1	0	1	5	0,83	0,75	0,91%
2023BOA0001	1	0	1	0	0	1	3	0,50	0,55	0,55%
2023BOA0002	5	2	6	5	2	0	20	3,33	2,34	3,64%
2023CBR0001	1	1	0	1	1	3	7	1,17	0,98	1,28%
2023CAN0001	0	1	0	0	2	3	6	1,00	1,26	1,09%
2023ONI0002	0	1	0	0	0	0	1	0,17	0,41	0,18%
2023ONI0003	1	8	11	11	14	0	45	7,50	5,75	8,20%
2023NAR0001	0	1	2	1	0	0	4	0,67	0,82	0,73%
2023NAR0002	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023NAR0003	0	0	1	5	1	0	7	1,17	1,94	1,28%
2023CRV0002	0	0	0	1	0	0	1	0,17	0,41	0,18%
2023CRR0001	2	0	0	1	0	0	3	0,50	0,84	0,55%
2023CSO0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023CAL0001	1	3	1	1	1	0	7	1,17	0,98	1,28%
2023COA0001	3	3	4	5	3	13	31	5,17	3,92	5,65%
2023COL0027	0	2	0	0	0	0	2	0,33	0,82	0,36%
2023CUD0012	0	2	1	1	1	0	5	0,83	0,75	0,91%
2023GIJ0014	0	1	2	3	8	1	15	2,50	2,88	2,73%
2023GRA0034	3	0	1	5	1	0	10	1,67	1,97	1,82%
2023GRA0052	3	1	0	0	0	0	4	0,67	1,21	0,73%

Tabla 19. Continuación.

ESTACIONES	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	∑TOTAL	MEDIA	DS	%TOTAL
2023GRS0001	0	0	0	0	1	1	2	0,33	0,52	0,36%
2023IBI0001	0	0	3	3	0	0	6	1,00	1,55	1,09%
2023IBI0002	0	0	1	0	0	0	1	0,17	0,41	0,18%
2023LAN0028	0	0	0	3	2	6	11	1,83	2,40	2,00%
2023LAV0001	0	0	1	3	2	3	9	1,50	1,38	1,64%
2023LEN0001	1	0	5	0	2	2	10	1,67	1,86	1,82%
2023LRA0002	0	0	0	1	0	0	1	0,17	0,41	0,18%
2023LRA0003	0	4	6	0	1	4	15	2,50	2,51	2,73%
2023LLA0005	0	0	2	0	0	2	4	0,67	1,03	0,73%
2023LLA0006	0	0	3	1	1	0	5	0,83	1,17	0,91%
2023MIE0001	0	0	6	5	7	4	22	3,67	3,01	4,01%
2023MIE0002	0	0	0	0	0	1	1	0,17	0,41	0,18%
2023MOR0001	0	1	0	2	0	1	4	0,67	0,82	0,73%
2023NAV0002	0	1	1	0	1	0	3	0,50	0,55	0,55%
2023NIA0001	0	0	1	2	1	11	15	2,50	4,23	2,73%
2023OVI0001	0	1	2	0	1	2	6	1,00	0,89	1,09%
2023PIL0002	1	1	1	0	0	8	11	1,83	3,06	2,00%
2023PIL0003	0	0	1	2	0	4	7	1,17	1,60	1,28%
2023PON0001	1	4	3	4	1	1	14	2,33	1,51	2,55%
2023PRA0001	0	2	1	2	1	9	15	2,50	3,27	2,73%
2023PRO0001	0	0	1	1	0	1	3	0,50	0,55	0,55%
2023RID0002	0	0	1	0	0	0	1	0,17	0,41	0,18%
2023SLS0002	0	1	2	0	1	0	4	0,67	0,82	0,73%
2023STA0001	0	0	0	1	1	2	4	0,67	0,82	0,73%
2023SEO0001	0	0	0	0	0	3	3	0,50	1,22	0,55%
2023SIE0004	0	0	0	1	0	4	5	0,83	1,60	0,91%

Tabla 19. Continuación.

ESTACIONES	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	∑TOTAL	MEDIA	DS	%TOTAL
2023SIE0005	0	0	3	4	0	10	17	2,83	3,92	3,10%
2023SIE0006	0	4	6	3	1	1	15	2,50	2,26	2,73%
2023SOM0001	2	6	0	7	4	4	23	3,83	2,56	4,19%
2023SOM0002	0	6	5	17	3	2	33	5,50	6,02	6,01%
2023SOM0003	1	0	1	0	1	0	3	0,50	0,55	0,55%
2023SOT0001	0	1	1	0	1	4	7	1,17	1,47	1,28%
2023TAP0001	0	0	0	0	1	8	9	1,50	3,21	1,64%
2023TEV0001	1	0	0	0	0	0	1	0,17	0,41	0,18%
2023TIN0228	0	1	0	0	0	0	1	0,17	0,41	0,18%
2023TIN0285	0	0	5	9	1	1	16	2,67	3,61	2,91%
2023TIN0286	0	0	2	0	0	0	2	0,33	0,82	0,36%
2023TIN0298	0	0	1	2	1	4	8	1,33	1,51	1,46%
2023TIN0316	1	0	2	1	1	2	7	1,17	0,75	1,28%
2023VAL0002	0	0	0	0	2	2	4	0,67	1,03	0,73%
2023VAL0003	0	0	0	0	0	2	2	0,33	0,82	0,36%
2023VAL0004	3	1	0	2	1	1	8	1,33	1,03	1,46%
2023VAL0023	0	0	0	3	0	6	9	1,50	2,51	1,64%
2023VEG0001	0	1	0	1	0	0	2	0,33	0,52	0,36%
2023VIL0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
2023VIL0002	3	0	1	1	1	0	6	1,00	1,10	1,09%
2023VIN0001	0	0	0	0	0	0	0	0,00	0,00	0,00%
TOTAL	39	66	103	124	79	138	549		_	_
Media	0,55	0,93	1,45	1,75	1,11	1,94	7,73			
DS	1,09	1,61	2,12	2,87	2,10	2,91	8,27			
%Total	7,10%	12,02%	18,76%	22,59%	14,39%	25,14%	100,00%			

2.1.5 **Dolichovespula media**

La avispa mediana (*Dolichovespula media*) es una especie de insecto himenóptero de la familia Vespidae que se encuentra en muy extendida por la Región Paleártica (Castro & Aguado, 2007) pero, debido a sus preferencias netamente eurosiberianas, tiene en las áreas de clima mediterráneo una distribución muy restringida. Se trata de individuos de mediano tamaño, oscilando entre los 16 y los 22 mm de longitud en la casta obrera, llegando a superar los 30 mm en las reinas, es la especie de véspido más grande por detrás de las especies del género Vespa (Matsuura & Yamane, 1990; Archer, 1998; 2006). Ciertas obreras presentan una coloración negro-amarillenta, muy similar al patrón que presenta el avispón europeo (*Vespa crabro*) lo que hace que se confunda fácilmente, sin embargo, ciertas obreras presentan el abdomen prácticamente negro con bandas amarillas muy estrechas. Se puede encontrar en todo tipo de ambientes, desde zonas naturales hasta zonas suburbanas donde construyen sus nidos en arbustos, árboles y, a veces, bajo los aleros de los edificios (Archer, 2006). Presenta requerimientos y hábitos alimenticios similares a los que presentan los individuos del género *Vespula* (Matsuura & Yamane, 1990; Archer, 1998) (Figura 86).

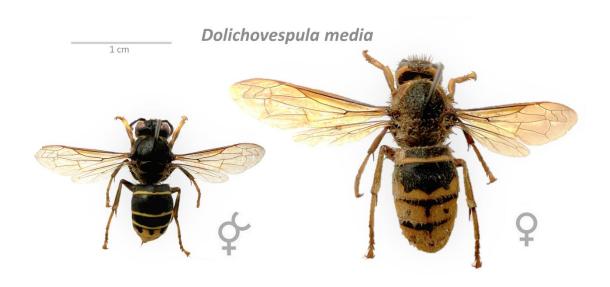
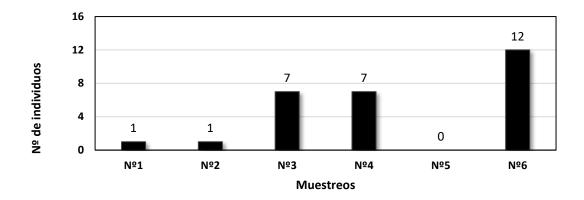
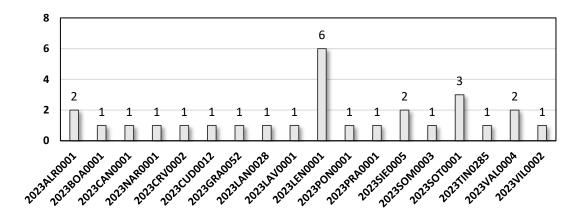



Figura 86. Obrera (izquierda) y reina (derecha) de Dolichovespula media.


Tabla 20. Resultados de la captura total de *Dolichovespula media* en los 6 muestreos de las estaciones muestreadas durante la campaña 2023. Se indica el número medio de individuos por estación, desviación estándar (DS) y el porcentaje de *Dolichovespula media* capturadas sobre el número total de *Dolichovespula media* atrapados durante la campaña 2023.

Estaciones	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	∑Total	MEDIA	DS	%Total
2023ALR0001	0	0	2	0	0	0	2	0,33	0,82	7,14%
2023BOA0001	0	0	0	0	0	1	1	0,17	0,41	3,57%
2023CAN0001	0	0	0	1	0	0	1	0,17	0,41	3,57%
2023NAR0001	0	0	1	0	0	0	1	0,17	0,41	3,57%
2023CRV0002	0	1	0	0	0	0	1	0,17	0,41	3,57%
2023CUD0012	0	0	0	0	0	1	1	0,17	0,41	3,57%
2023GRA0052	0	0	0	1	0	0	1	0,17	0,41	3,57%
2023LAN0028	0	0	0	0	0	1	1	0,17	0,41	3,57%
2023LAV0001	0	0	0	1	0	0	1	0,17	0,41	3,57%
2023LEN0001	0	0	3	3	0	0	6	1,00	1,55	21,43%
2023PON0001	0	0	0	0	0	1	1	0,17	0,41	3,57%
2023PRA0001	0	0	0	0	0	1	1	0,17	0,41	3,57%
2023SIE0005	0	0	0	0	0	2	2	0,33	0,82	7,14%
2023SOM0003	0	0	0	1	0	0	1	0,17	0,41	3,57%
2023SOT0001	0	0	0	0	0	3	3	0,50	1,22	10,71%
2023TIN0285	0	0	1	0	0	0	1	0,17	0,41	3,57%
2023VAL0004	0	0	0	0	0	2	2	0,33	0,82	7,14%
2023VIL0002	1	0	0	0	0	0	1	0,17	0,41	3,57%
TOTAL	1	1	7	7	0	12	28			
%TOTAL	3,57%	3,57%	25,00%	25,00%	0,00%	42,86%	100,00%			

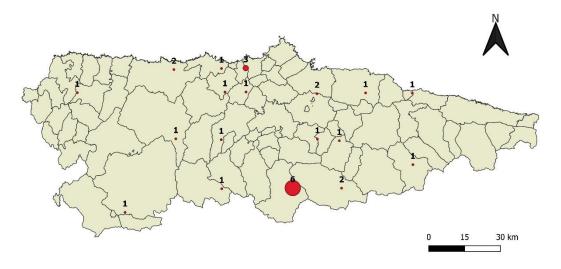
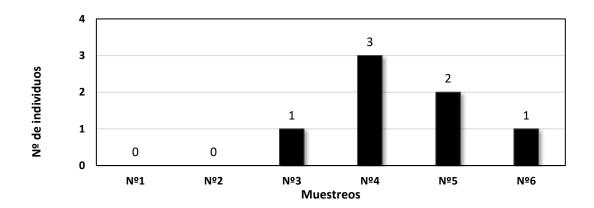

Resultados: Se analizaron un total de 28 individuos de *Dolichovespula media* en la campaña 2023 (Figura 87), donde las estaciones con mayor abundancia de individuos de *Dolichovespula media* resultaron ser el 2023LEN0001 (6 individuos) y 2023SOT0001 (3 individuos) representando respectivamente el 21,43% y 10,71% del total de individuos de *Dolichovespula media* capturados en la campaña 2023 (Figura 88-89; Tabla 20). El muestreo con mayor número de individuos atrapados fue el Nº6 con un total de 12 individuos de *Dolichovespula media*, representando el 42,86% del total de las capturas. Se ha comprobado su presencia en 18 de las 71 (25,35%) estaciones muestreadas en la campaña 2023.

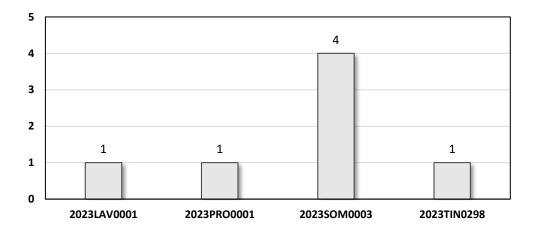
Figura 87. Número total de individuos de *Dolichovespula media* capturados en las diferentes épocas de muestreo realizadas en la campaña 2023.

Figura 88. Número total de individuos de *Dolichovespula media* capturados en las diferentes estaciones muestreadas durante la campaña 2023.

Figura 89. Distribución geográfica del total de las capturas de *Dolichovespula media* capturadas en las diferentes estaciones muestreadas durante la campaña 2023.


2.1.6 *Dolichovespula sylvestriss*

La avispa arborícola (*Dolichovespula sylvestris*) es una especie de insecto himenóptero de la familia Vespidae que se encuentra en las regiones templadas de Eurasia, especialmente en Europa occidental (Edwards, 1980). A pesar de llamarse avispa de los árboles, construye nidos de papel tanto aéreos como subterráneos, y puede encontrarse en hábitats rurales y urbanos (Edwards, 1980; Ings & Edwards, 2002). Es más común ver esta avispa entre mayo y septiembre (Ings & Edwards, 2002). Por lo general, no se considera una especie plaga a pesar de que está muy extendida en muchas regiones y vive en zonas urbanas anidando en zonas como el suelo o en los edificios (Edwards, 1980). Esto se debe sobre todo a que a esta especie de avispa no le gusta entrar en los edificios y no le interesan los tipos de alimentos que consumen los humanos, además, no es muy agresiva en comparación con otras especies de avispas, pero puede picar si siente que su nido está amenazado (Edwards, 1980). Presenta requerimientos y hábitos alimenticios similares a los que presentan los individuos del género *Vespula* (Matsuura & Yamane, 1990; Archer, 1998).


Tabla 21. Resultados de la captura total de *Dolichovespula sylvestris* en los 6 muestreos de las estaciones muestreadas durante la campaña 2023. Se indica el número medio de individuos por estación, desviación estándar (DS) y el porcentaje de *Dolichovespula sylvestris* capturadas sobre el número total de *Dolichovespula sylvestris* atrapados durante la campaña 2023.

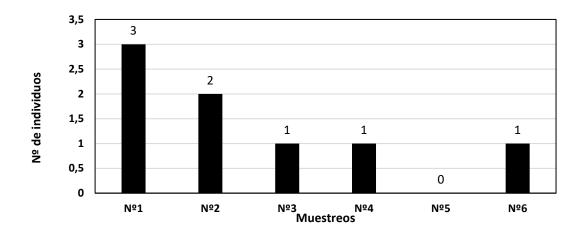
Estaciones	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	∑Total	MEDIA	DS	%Total
2023LAV0001	0	0	0	1	0	0	1	0,17	0,41	14,29%
2023PRO0001	0	0	1	0	0	0	1	0,17	0,41	14,29%
2023SOM0003	0	0	0	2	2	0	4	0,67	1,03	57,14%
2023TIN0298	0	0	0	0	0	1	1	0,17	0,41	14,29%
TOTAL	0	0	1	3	2	1	7			
%TOTAL	0,00%	0,00%	14,29%	42,86%	28,57%	14,29%	100,00%			

Resultados: Se analizaron un total de 7 individuos de *Dolichovespula sylvestris* en la campaña 2023 (Figura 90), donde la estación con mayor abundancia de individuos de *Dolichovespula sylvestris* resultó ser 2023SOM0003 (4 individuos) representando el 57,14% del total de individuos de *Dolichovespula sylvestris* capturados en la campaña 2023 (Figura 91-92; Tabla 21). El muestreo con mayor número de individuos atrapados fue el Nº4 con un total de tres individuos de *Dolichovespula sylvestris*, representando el 42,86% del total de las capturas. Se ha comprobado su presencia en 4 de las 71 (5,63%) estaciones muestreadas en la campaña 2023.

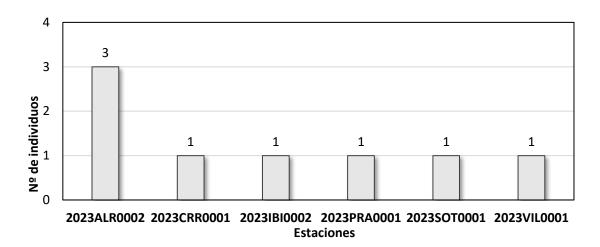
Figura 90. Número total de individuos de *Dolichovespula sylvestris* capturados en las diferentes épocas de muestreo realizadas en la campaña 2023.

Figura 91. Número total de individuos de *Dolichovespula sylvestris* capturados en las diferentes estaciones muestreadas durante la campaña 2023.

Figura 92. Distribución geográfica del total de las capturas de *Dolichovespula sylvestris* capturadas en las diferentes estaciones muestreadas durante la campaña 2023.


2.1.7 Polistes dominula

La avispa de papel europea (*Polistes dominula*) es una especie de himenóptero apócrito de la familia Vespidae (Matsuura & Yamane, 1990). También es conocida como la avispa papelera europea o avispa cartonera europea. Es nativa del Eurasia y del norte de África, aunque ha sido introducida accidentalmente en América, Sudáfrica y en Australia (Gamboa et al, 2002). Se trata de individuos de pequeño tamaño, oscilando entre los 13 y los 20 mm de longitud. Habitualmente construye sus nidos en bajo aleros y abrigos en los techos de edificaciones y construcciones humanas, aunque también pueden construirlos sobre árboles, bajo piedras y otras zonas naturales que no estén muy expuestas a los elementos (Jandt et al, 2014). La avispa adulta se alimenta principalmente de frutas maduras, aunque también presenta hábitos depredadores y carroñeros (Matsuura & Yamane, 1990).


Tabla 22. Resultados de la captura total de *Polistes dominula* en los 6 muestreos de las estaciones muestreadas durante la campaña 2023. Se indica el número medio de individuos por estación, desviación estándar (DS) y el porcentaje de *Polistes dominula* capturadas sobre el número total de *Polistes dominula* atrapados durante la campaña 2023.

ESTACIONES	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	ΣΤΟΤΑL	MEDIA	DS	%TOTAL
2023ALR0002	3	0	0	0	0	0	3	0,50	1,22	37,50%
2023CRR0001	0	0	0	1	0	0	1	0,17	0,41	12,50%
2023IBI0002	0	0	1	0	0	0	1	0,17	0,41	12,50%
2023PRA0001	0	0	0	0	0	1	1	0,17	0,41	12,50%
2023SOT0001	0	1	0	0	0	0	1	0,17	0,41	12,50%
2023VIL0001	0	1	0	0	0	0	1	0,17	0,41	12,50%
TOTAL	3	2	1	1	0	1	8			
%TOTAL	37,5%	25,0%	12,5%	12,5%	0,0%	12,5%	100,0%			

Resultados: Se analizaron un total de 8 individuos de *Polistes dominula* en la campaña 2023 (Figura 93), donde la estación con mayor abundancia de individuos de *Polistes dominula* resultó ser 2023ALR0002 (3 individuos), representando el 37,50% del total de individuos de *Polistes dominula* capturados en la campaña 2023 (Figura 94-95; Tabla 22). El muestreo con mayor número de individuos atrapados resultó ser el Nº1 con un total de 3 individuos de *Polistes dominula*, representando el 37,50% del total de las capturas. Se ha comprobado su presencia en 6 de las 71 (8,45%) estaciones muestreadas en la campaña 2023.

Figura 93. Número total de individuos de *Polistes dominula* capturados en las diferentes épocas de muestreo realizadas en la campaña 2023.

Figura 94. Número total de individuos de *Polistes dominula* capturados en las diferentes estaciones muestreadas durante la campaña 2023.

Figura 95. Distribución geográfica del total de las capturas de *Polistes dominula* capturadas en las diferentes estaciones muestreadas durante la campaña 2023.

2.2 Familia Apidae

Resultados: Se analizaron un total de 122 individuos, agrupados en cinco especies, donde aquellas con mayor abundancia de individuos resultaron ser la especie *Apis mellifera* y la especie *Bombus terrestris lusitanicus*, representando respectivamente el 53,28% y 44,26% del total de individuos de la familia Apidae capturados en la campaña 2023 (Figura 96).

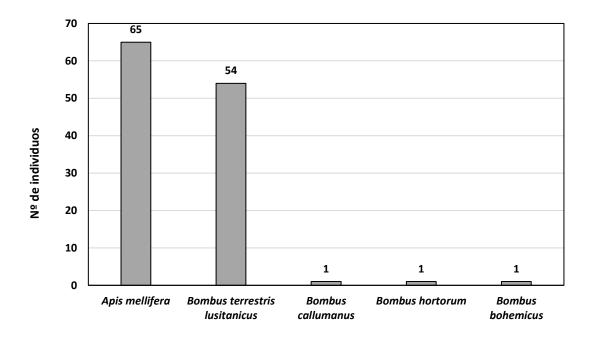
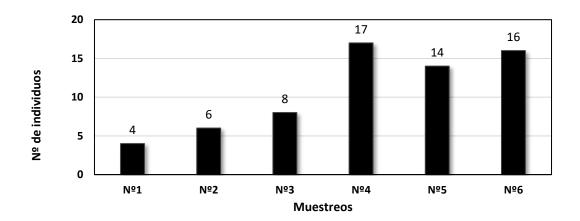
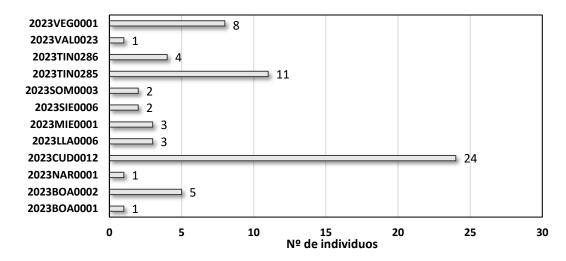


Figura 96. Número total de individuos de la familia Apidae capturados durante la campaña 2023.

2.2.1 Apis mellifera


La abeja europea (*Apis mellifera* Linnaeus, 1758), también conocida como abeja doméstica o abeja melífera, es una especie de himenóptero apócrito de la familia Apidae. Es la especie de abeja con mayor distribución en el mundo, originaria de Europa, África y parte de Asia, y recientemente ha sido introducida en América y Oceanía (Paini, 2004). Actualmente la población de abejas en algunos países se halla en franco retroceso sin que se conozca de manera clara las causas, que bien podría ser un cúmulo de diversos factores (Paudel et al, 2015). Son uno de los principales polinizadores, presentando una alta importancia ecológica (Southwick & Southwick, 1992). Las abejas se alimentan de néctar y polen obtenidos de las flores. El néctar es el alimento energético y el polen proporciona las proteínas, grasas y minerales necesarios para la supervivencia (Southwick & Southwick, 1992). Tanto las obreras como la abeja reina se alimentan de jalea real (segregada por las glándulas hipofaríngeas de la cabeza de abejas obreras) durante los primeros tres días de la fase larval. Luego las obreras cambian por una dieta

de polen y néctar o miel diluida, mientras que aquellas larvas elegidas para ser abejas reinas continúan recibiendo jalea real. Esto causa que la larva se convierta en pupa más rápidamente además de aumentar su tamaño y desarrollarla sexualmente (Seeley & Morse, 1976; Southwick & Southwick, 1992).


Tabla 23. Resultados de la captura total de *Apis mellifera* en los 6 muestreos de las estaciones muestreadas durante la campaña 2023. Se indica el número medio de individuos por estación, desviación estándar (DS) y el porcentaje de *Apis mellifera* capturadas sobre el número total de *Apis mellifera* atrapados durante la campaña 2023.

CODIGOS	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	ΣΤΟΤΑL	MEDIA	DS	%TOTAL
2023BOA0001	0	0	1	0	0	0	1	0,17	0,41	1,54%
2023BOA0002	0	2	1	2	0	0	5	0,83	0,98	7,69%
2023NAR0001	0	0	0	0	1	0	1	0,17	0,41	1,54%
2023CUD0012	1	0	0	13	10	0	24	4,00	5,90	36,92%
2023LLA0006	0	0	1	1	0	1	3	0,50	0,55	4,62%
2023MIE0001	3	0	0	0	0	0	3	0,50	1,22	4,62%
2023SIE0006	0	0	0	1	1	0	2	0,33	0,52	3,08%
2023SOM0003	0	0	2	0	0	0	2	0,33	0,82	3,08%
2023TIN0285	0	0	0	0	1	10	11	1,83	4,02	16,92%
2023TIN0286	0	2	2	0	0	0	4	0,67	1,03	6,15%
2023VAL0023	0	0	0	0	0	1	1	0,17	0,41	1,54%
2023VEG0001	0	2	1	0	1	4	8	1,33	1,51	12,31%
TOTAL	4	6	8	17	14	16	65			
%TOTAL	6,15%	9,23%	12,31%	26,15%	21,54%	24,62%	100,00%			

Resultados: Se analizaron un total de 65 individuos de *Apis mellifera* en la campaña 2023 (Figura 97), donde las estaciones con mayor abundancia de individuos de *Apis mellifera* resultaron ser 2023CUD0012 (24 individuos) y 2023TIN0285 (11 individuos), representando respectivamente el 36,92% y 16,92% del total de individuos de *Apis mellifera* capturados en la campaña 2023 (Figura 98-99; Tabla 23). El muestreo con mayor número de individuos atrapados resultó ser el Nº4 con un total de 17 individuos de *Apis mellifera*, representando el 26,15% del total de las capturas. Se ha comprobado su presencia en 12 de las 71 (16,90%) estaciones muestreadas en la campaña 2023.

Figura 97. Número total de individuos de *Apis mellifera* capturados en las diferentes épocas de muestreo realizadas en la campaña 2023.

Figura 98. Número total de individuos de *Apis mellifera* capturados en las diferentes estaciones muestreadas durante la campaña 2023.

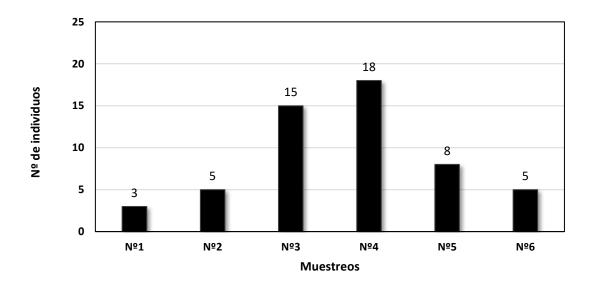


Figura 99. Distribución geográfica del total de las capturas de *Apis mellifera* capturadas en las diferentes estaciones muestreadas durante la campaña 2023.

2.2.2 **Bombus terrestris lusitanicus**

El abejorro común (*Bombus terrestris lusitanicus* (Krüger, 1956)) es una especie de himenóptero apócrito de la familia Apidae. Es uno de los abejorros más comunes de Europa. Tiene el cuerpo negro con bandas amarillas diferenciándose de otras especies de abejorros por el color blanquecino del extremo del abdomen (Rasmont et al, 2008). Es un abejorro grande, la reina puede medir entre 20 y 27 mm de longitud, mientras que las obreras miden entre 15 y 20 mm (Rasmont et al, 2008). Las colonias pueden albergar hasta cuatrocientas obreras. La alimentación de las crías consiste en polen y néctar recogido por las obreras de la colmena (Wolf & Moritz, 2008). Los abejorros practican un sistema de polinización vibratoria o polinización por zumbido que es la única forma de polinizar las flores de plantas tales como el tomate, por ello, en Europa y otras partes del mundo, los abejorros de ésta y otras especies son usados para efectuar la polinización de los tomates de invernadero (Gumbert, 2000; Walther-Hellwig, 2000).

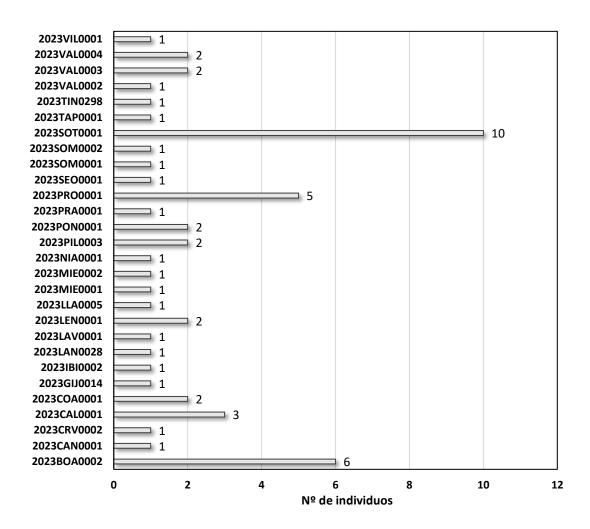

Resultados: Se analizaron un total de 54 individuos de *Bombus terrestris lusitanicus* en la campaña 2023 (Figura 100), donde las estaciones con mayor abundancia de individuos de *Bombus terrestris lusitanicus* resultaron ser 2023SOT0001 (10 individuos) y 2023BOA0002 (6 individuos), representando respectivamente el 18,52% y 11,11% del total de individuos de *Bombus terrestris lusitanicus* capturados en la campaña 2023 (Figura 101-102; Tabla 24). El muestreo con mayor número de individuos atrapados resultó ser el Nº4 con un total de 18 individuos de *Bombus terrestris lusitanicus*, representando el 33,33% del total de las capturas. Se ha comprobado su presencia en 28 de las 71 (39,43%) estaciones muestreadas en la campaña 2023.

Figura 100. Número total de individuos de *Bombus terrestris lusitanicus* capturados en las diferentes épocas de muestreo realizadas en la campaña 2023.

Tabla 24. Resultados de la captura total de *Bombus terrestris lusitanicus* en los 6 muestreos de las estaciones muestreadas durante la campaña 2023. Se indica el número medio de individuos por estación, desviación estándar (DS) y el porcentaje de *Bombus terrestris lusitanicus* capturadas sobre el número total de *Bombus terrestris lusitanicus* atrapados durante la campaña 2023.

CODIGOS	Nº1	Nº2	Nº3	Nº4	Nº5	Nº6	∑TOTAL	MEDIA	DS	%TOTAL
2023BOA0002	0	0	1	2	3	0	6	1,00	1,26	11,11%
2023CAN0001	0	0	0	0	1	0	1	0,17	0,41	1,85%
2023CRV0002	0	0	0	1	0	0	1	0,17	0,41	1,85%
2023CAL0001	1	0	0	2	0	0	3	0,50	0,84	5,56%
2023COA0001	0	0	0	2	0	0	2	0,33	0,82	3,70%
2023GIJ0014	0	0	0	0	0	1	1	0,17	0,41	1,85%
2023IBI0002	0	0	1	0	0	0	1	0,17	0,41	1,85%
2023LAN0028	0	1	0	0	0	0	1	0,17	0,41	1,85%
2023LAV0001	0	1	0	0	0	0	1	0,17	0,41	1,85%
2023LEN0001	0	0	1	1	0	0	2	0,33	0,52	3,70%
2023LLA0005	0	0	0	0	1	0	1	0,17	0,41	1,85%
2023MIE0001	0	0	1	0	0	0	1	0,17	0,41	1,85%
2023MIE0002	0	0	0	1	0	0	1	0,17	0,41	1,85%
2023NIA0001	0	0	0	0	1	0	1	0,17	0,41	1,85%
2023PIL0003	0	0	0	2	0	0	2	0,33	0,82	3,70%
2023PON0001	0	0	0	0	2	0	2	0,33	0,82	3,70%
2023PRA0001	0	0	1	0	0	0	1	0,17	0,41	1,85%
2023PRO0001	1	1	0	3	0	0	5	0,83	1,17	9,26%
2023SEO0001	0	0	0	1	0	0	1	0,17	0,41	1,85%
2023SOM0001	0	0	0	0	0	1	1	0,17	0,41	1,85%
2023SOM0002	0	0	0	1	0	0	1	0,17	0,41	1,85%
2023SOT0001	0	0	9	1	0	0	10	1,67	3,61	18,52%
2023TAP0001	0	0	0	0	0	1	1	0,17	0,41	1,85%
2023TIN0298	0	0	0	0	0	1	1	0,17	0,41	1,85%
2023VAL0002	0	0	1	0	0	0	1	0,17	0,41	1,85%
2023VAL0003	0	0	0	1	0	1	2	0,33	0,52	3,70%
2023VAL0004	0	2	0	0	0	0	2	0,33	0,82	3,70%
2023VIL0001	1	0	0	0	0	0	1	0,17	0,41	1,85%
TOTAL	3	5	15	18	8	5	54			
%TOTAL	5,56%	9,26%	27,78%	33,33%	14,81%	9,26%	100,00%			

Figura 101. Número total de individuos de *Bombus terrestris lusitanicus* capturados en las diferentes estaciones muestreadas durante la campaña 2023.

Figura 102. Distribución geográfica del total de las capturas de *Bombus terrestris lusitanicus* capturadas en las diferentes estaciones muestreadas durante la campaña 2023.

2.2.3 **Bombus bohemicus**

El abejorro cuco (*Bombus bohemicus* Seidl, 1838) es una especie de abejorro cuco socialmente parásito que se encuentra en la mayor parte de Europa, a excepción del sur de la Península Ibérica e Islandia. *Bombus bohemicus* es un parásito generalista que invade con éxito varias especies del género *Bombus* (Kreuter & Bunk, 2011). La reina invasora imita las señales químicas del nido hospedador, lo que le permite asumir un papel reproductivamente dominante, así como manipular la fertilidad y el comportamiento de las obreras hospedadoras (Kreuter & Bunk, 2011).

Resultados: Se analizó un único individuo de *Bombus bohemicus* encontrado en el muestreo №3 de la estación 2023GRA0052 (Figura 103).

Figura 103. Distribución geográfica del total de las capturas de *Bombus bohemicus* capturadas en las diferentes estaciones muestreadas durante la campaña 2023.

2.2.4 Bombus cullumanus

El abejorro de Cullum (*Bombus cullumanus* (Kirby, 1802)) es un abejorro pequeño con una amplia distribución en la mayor parte de Europa y Asia. *Bombus cullumanus* es una especie social y polinizadora que construye un nido subterráneo. La emergencia de las reinas se produce en el mes de mayo y el período de vuelo abarca desde junio hasta primeros de septiembre. Tiene tendencia esteparia y en el territorio ibérico muestra preferencia por biotopos abiertos (prados, cultivos, etc.) (Verdú et al, 2011). Esta especie está incluida en el Atlas y Libro rojo de los invertebrados Amenazados de España, como especie vulnerable (Verdú et al, 2011).

Resultados: Se analizó un único individuo de *Bombus cullumanus* encontrado en el muestreo Nº2 de la estación 2023NAR0002 (Figura 104).

Figura 104. Distribución geográfica del total de las capturas de *Bombus cullumanus* capturadas en las diferentes estaciones muestreadas durante la campaña 2023.

2.2.5 **Bombus hortorum**

El abejorro de jardín (*Bombus hortorum* (Linnaeus, 1761)) es un abejorro mediano con una amplia distribución en la mayor parte de Europa, Asia y Nueva Zelanda. Se distingue de la mayoría de los demás abejorros por su larga lengua, que utiliza para alimentarse del polen de las plantas con corolas profundas como la acedera, la hiedra terrestre, las vezas, los tréboles, la consuelda, la dedalera y los cardos (Meyer-Rochow, 2012).

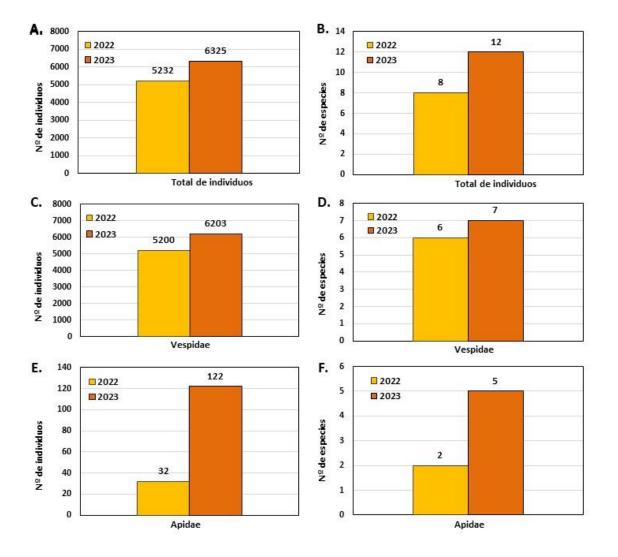

Resultados: Se analizó un único individuo de *Bombus hortorum* encontrado en el muestreo №4 de la estación 2023TIN0316 (Figura 105).

Figura 105. Distribución geográfica del total de las capturas de *Bombus hortorum* capturadas en las diferentes estaciones muestreadas durante la campaña 2023.

2.3 Estudio comparativo 2022-2023

Resultados: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023 (factor de multiplicación de 1,21x) respecto a la campaña 2022. En cuanto a la diversidad de especies, la campaña 2023 presentó mayor diversidad (7 especies) en comparación con la campaña 2022 (6 especies) para la familia Vespidae. Por otro lado, la campaña 2023 también reveló mayor diversidad de especies de la familia Apidae en la campaña 2023 (5 especies) en comparación con la campaña 2022 (2 especies) (Tabla 25; Figura 106).

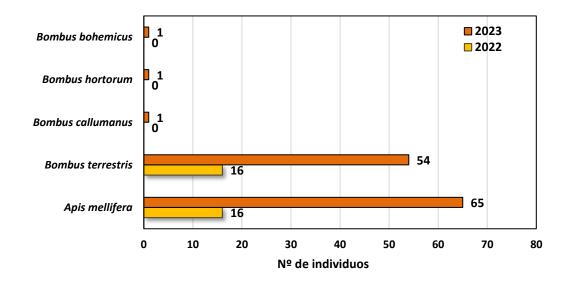
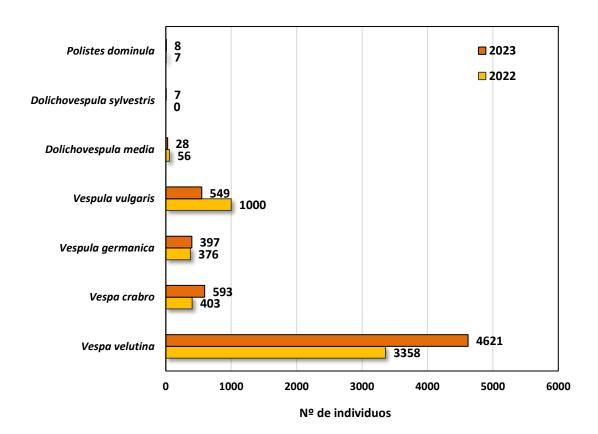


Figura 106. Resumen de las capturas totales de las campañas 2022 y 2023. Número total de individuos (A) y especies (B) de himenópteros; Número total de individuos (C) y especies (D) de véspidos; Número total de individuos (E) y especies (F) de ápidos.

Tabla 25. Resultados de la captura de himenópteros durante las campañas 2022 y 2023. Se indica el número total de individuos de cada especie y el porcentaje de individuos capturados sobre el número total de himenópteros atrapados durante cada campaña.


Familia	Especie	2022		2023	
		Nº ind.	% Total	Nº ind.	% Total
Vespidae	Vespa velutina	3358	64,18%	4621	73,06%
	Vespa crabro	403	7,70%	593	9,38%
	Vespula germanica	376	7,19%	397	6,28%
	Vespula vulgaris	1000	19,11%	549	8,68%
	Dolichovespula media	56	1,07%	28	0,44%
	Dolichovespula sylvestris	0	0,00%	7	0,11%
	Polistes dominula	7	0,13%	8	0,13%
Apidae	Apis mellifera	16	0,31%	65	1,03%
	Bombus terrestris	16	0,31%	54	0,85%
	Bombus callumanus	0	0,00%	1	0,02%
	Bombus hortorum	0	0,00%	1	0,02%
	Bombus bohemicus	0	0,00%	1	0,02%
	Nº total de individuos	5232	100,00%	6325	100,00%
	Individuos de Vespidae	5200	99,39%	6203	98,07%
	Individuos de Apidae	32	0,61%	122	1,93%

Apidae: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023 (factor de multiplicación de 3,81x) respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en todas las especies de la familia Apidae durante la campaña 2023 (Tabla 25; Figura 107).

Figura 107. Número total de individuos de las diferentes especies de la familia Apidae capturadas en las campañas 2022 y 2023.

Vespidae: El estudio comparativo reveló una mayor abundancia total de individuos durante la campaña 2023 (factor de multiplicación de 1,19x) respecto a la campaña 2022. El estudio reveló, además, una mayor abundancia en las especies Vespa crabro, Vespa velutina, Vespula germanica, Dolichovespula sylvestris y Polistes dominula durante la campaña 2023, mientras que las especies Vespula vulgaris y Dolichovespula media presentaron mayores abundancias durante la campaña 2022 (Tabla 25; Figura 108).

Figura 108. Número total de individuos de las diferentes especies de la familia Vespidae capturadas en las campañas 2022 y 2023.

3 Consideraciones finales

Los datos obtenidos en este análisis concuerdan con los principales estudios anteriormente sobre la selectividad y eficacia de las trampas de control de avispa asiática (Rojas-Nossa et al, 2018; Lioy et al, 2020; Sánchez & Arias, 2021). En todos ellos, el principal grupo afectado por el trampeo fueron los dípteros, seguidos de los himenópteros, generalmente por la presencia masiva de hormigas (familia Formicidae).

En cuanto a la entomofauna más comprometida en este estudio podemos destacar al orden Diptera ya que ha sido el grupo más afectado por las trampas de captura de *Vespa velutina* a nivel global. Este grupo engloba numerosas familias de moscas y mosquitos, muchas de las cuales presentan especial interés desde el punto de vista económico por su implicación agrícola, veterinaria, médica e incluso agronómica debido a que se trata de un grupo altamente polinizador y que algunas especies son plagas de cultivos o ayudan a controlar a las mismas (Gállego, 2006). Dentro de este orden han destacado principalmente los drosofílidos, los anisopódidos y los califóridos. Entre los drosofílidos, comúnmente denominadas "moscas del vinagre" o "moscas de la fruta" (Reiter et al, 2001), destaca la presencia de la especia invasora, *Drosophila suzukii* de la cual se conoce su presencia en el Principado desde 2012, donde ha sido evaluado su impacto nocivo en las plantaciones de fresa (Fiel et al, 2014).

En cuanto al orden Hymenoptera, ha resultado ser el segundo grupo más afectado por las trampas. Este grupo está formado por organismos muy diversos, desde abejas y abejorros hasta avispas y hormigas (Nieves-Aldrey et al, 2006). Algunas especies presentan especial interés desde el punto de vista económico por su implicación agrícola, ya que este orden incluye a un gran número de especies depredadoras o parásitas de otros insectos, sirviendo de control de plagas, y a los polinizadores más importantes, las abejas, especialmente la abeja doméstica (*Apis mellifera*) (Southwick & Southwick, 1962). Dentro de este orden han destacado principalmente los formícidos, los véspidos y los calcidoideos. Entre estos véspidos destaca la presencia de las avispas papeleras (*Polistes* spp.), avispas comunes (*Vespula* spp.), así como el avispón europeo (*Vespa crabro*) y el avispón o avispa asiática (*Vespa velutina*). En cuanto a estas dos especies, cabe destacar la escasa aparición de *Vespa crabro*, con solamente seis individuos capturados, en contraposición con su congénere invasor, la *Vespa velutina*, de la cual se han capturado un total de 105 individuos. Por último, en cuanto a los calcidoideos, destacan varios géneros de avispillas parásitas como *Torymus*, *Eupelmus* y *Bootanomyia*, sin embargo, las capturas más relevantes de este grupo recaen en las especies invasoras *Dryocosmus kuriphilus*, denominada

avispilla del castaño, debido a los ataques que realiza a estos árboles, y la de *Torymus sinensis*, una especie de parasitoide asiático liberado de manera intencionada para actuar como control biológico contra la avispilla del castaño a la cual parasita. Sin embargo, durante la campaña 2023 no se han encontrado ejemplares de ninguna de estas dos especies de calcidoideos invasores.

Además, en menor medida también se han visto comprometidos numerosos individuos del orden Coleoptera, resultando ser el cuarto grupo más afectado por las trampas. Este grupo engloba numerosas familias de escarabajos, muchas de las cuales presentan especial interés desde el punto de vista económico por su implicación agrícola y agronómica debido a que se trata de un grupo que engloba especies polinizadoras, especies plaga e incluso controladores biológicos que regulan las poblaciones de otras especies mediante depredación (Gállego, 2006). Dentro de este orden han destacado principalmente los nitidúlidos, comúnmente denominados "escarabajos de la savia" y los estafilínidos o "escarabajos vagabundos".

También cabe destacar que las trampas han afectado a otros grupos taxonómicos como lepidópteros (mariposas y polillas), acariformes (ácaros), araneos (arañas), y blatodeos (Cucarachas; Fam. Ectobiidae).

En cuanto al estudio de himenópteros realizado a lo largo de toda la geografía asturiana destaca la presencia mayoritaria de los véspidos frente a los ápidos, dejando de manifiesto que las trampas de captura de *Vespa velutina*, pese a no ser lo selectivas que debieran ser con otros grupos taxonómicos, si lo son respecto a ápidos como la abeja melífera (*Apis mellifera*) y las diferentes especies de abejorros (*Bombus* spp.). Dentro de los véspidos destaca la presencia masiva del avispón asiático (*Vespa velutina*) cuya presencia se ha reportado todas las estaciones estudiadas (71 estaciones). Por otro lado, la especie *Vespa crabro* ha sido la siguiente especie con más capturas en este estudio seguido de *Vespula vulgaris* y *Vespula germanica*, lo que pone de manifiesto que, dentro de los himenópteros, el grupo de los véspidos es el más afectado por las trampas de captura de la avispa asiática. En cuanto a las épocas del año muestreadas se observa en general todas las especies (salvo *Polistes dominula*) siguen, debido a su comportamiento social y ciclo biológico, una abundancia secuencial, siendo menos abundantes en los muestreos realizados marzo y alcanzando su pico en junio.

En relación al estudio comparativo de himenópteros entre la campaña 2021 y 2022, destaca el aumento de abundancia de ápidos donde en 2023 se han encontrado hasta tres veces más ejemplares de *A. mellifera* y hasta cuatro veces más ejemplares de *B. terrestris*. Por otro lado, en la campaña 2023 se han encontrado tres especies más de ápidos que en la campaña 2022, que corresponden con las especies *B. cullumanus*, *B. bohemicus* y *B. hortorum*. En cuanto a los

véspidos destaca el aumento de más de un tercio de los ejemplares de *Vespa velutina* capturados en relación con la campaña 2022. Pese a que las abundancias de *P. dominula* y *V. germanica* parecen similares a los obtenidos en la campaña 2022, se observa un ligero aumento en el número de ejemplares de *Vespa crabro* capturados durante la campaña 2023, así como una disminución a casi la mitad en los ejemplares de *Vespula vulgaris*. Por último, destacar la presencia de *Dolichovespula sylvestris* durante la campaña 2023, especie no capturada en la campaña 2022.

En cuanto al estudio comparativo entre la campaña 2021, 2022 y 2023 se ha comprobado que, en cifras generales, la campaña 2023 ha presentado en la mayoría de los grupos estudiados, una menor diversidad y abundancia con respecto a la campaña 2021 y 2022, alcanzándose en ciertos grupos capturas de hasta 10 veces menos individuos que el año anterior. Este análisis, cuyos datos son comparables ya que se han utilizado los mismos métodos de captura y se han recogido durante el mismo periodo de tiempo, nos podría estar dando pistas sobre los factores que están propiciando el descenso en abundancia y diversidad de insectos. Los principales factores son el cambio climático, la degradación de hábitat (ya que hay más insectos en las trampas colocadas en áreas más naturales), la presión por especies invasoras o los métodos de control utilizados para ellas, aunque es posible que la acción combinada de todos ellos sea la verdadera causa del declive. Sin embargo, la presión debido a los métodos de control de especies invasoras podría estar afectando a la abundancia y diversidad de insectos ya que la colocación masiva de trampas de captura poco selectivas y eficaces puede estar suponiendo la retirada de grupos funcionales y biomasa del medio, afectando de manera grave a procesos ecosistémicos como la polinización, el ciclado de nutrientes o las cadenas tróficas.

4 Referencias

Alford, D. V. (1969). A study of the hibernation of bumblebees (Hymenoptera: Bombidae) in southern England. The Journal of Animal Ecology, 149-170.

Archer, M. E. (1998). Taxonomy and World Distribution of the Euro-Asian Species of *Dolichovespula* (Hym, Vespinae). Entomologist's Monthly Magazine: 153–160.

Archer, M. E. (2006). Taxonomy, distribution, and nesting biology of species of the genus *Dolichovespula* (Hymenoptera, Vespidae). Entomological Science, 9(3), 281-293.

Baranek, B., Kuba, K., Bauder, J., & Krenn, H. (2018). Mouthpart dimorphism in male and female wasps of *Vespula vulgaris* and *Vespula germanica* (Vespidae, Hymenoptera). Deutsche Entomologische Zeitschrift, 65(1), 65-74.

Bass, A., Needham, K., & Bennett, A. M. (2022). First record of *Vespa crabro* Linnaeus (Hymenoptera: Vespidae) in western North America with a review of recorded species of *Vespa* Linnaeus in Canada. Zootaxa, 5154(3), 305-318.

Bray, J. R. & Curtis, J. T. (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs, 27, 325–349. https://doi.org/10.2307/1942268.

Brodie, L. (1996). Bumblebee foraging preferences: differences between species and individuals. A thesis submitted as part of the requirements for the Degree of B. Sc. (Hons.) in Ecology at the University of Aberdeen.

Buck, M., Marshall, S. A., & Cheung, D. K. (2008). Identification Atlas of the Vespidae (Hymenoptera, Aculeata) of the northeastern Nearctic region. Canadian journal of arthropod identification, 5(1), 1-492.

Castro, L. (2009). Novedades sobre la distribución de *Dolichovespula media* (Retzius 1783) (Hymenoptera: Vespoidea: Vespinae) en la Península Ibérica. Boletín de la Sociedad Entomológica Aragonesa, 45, 414.

Clapperton, B. K., P., Lo; P. L., Moller, H., Sandlant, G. R. (1989). Variation in Colour Marking of German Wasps *Vespula germanica* (F.) and Common Wasps *Vespula vulgaris* (L.) (Hymenoptera: Vespidae) in New Zealand. New Zealand Journal of Zoology. 16 (3): 303–313

D'Assis-Fonseca E. C. M., 1968. Diptera: Cyclorrhapha Calyptrata (IV), Section (B). Muscidae. Handbooks For The Identification Of British Insects, 10(4), 1-133.

Díaz-González, T.E. (2014) Mapas de vegetación de las series, geoseries y geopermaseries de España. 1:250.000: Asturias. Global geobotany, 3: 1-34

Díaz-González, T.E. (2021) la vegetación del Principado de Asturias (España) (Esquema sintaxonómico de las comunidades vegetales). Bol. Ciencias y Tecnología R.I.D.E.A., 55(II): 339-646

Dvořák, L., & Roberts, S. P., 2006. Key To The Paper And Social Wasps Of Central Europe (Hymenoptera: Vespidae). Acta Entomologica Musei Nationalis Pragae, 46, 221-244.

Fiel, R. A., Narganes, A. G., & Argüelles, M. B., 2014. Incidencia de *Drosophila suzukii* en cultivos de arándano y frambuesa en Asturias. Phytoma España: La revista profesional de sanidad vegetal, (258), 49-53.

Edwards, R (1980). Social Wasps: Their Biology and Control. Felcourt, East Grinstead, W Sussex RH192JY: Rentokil Limited. ISBN 978-0906564011.

Gállego, B. J., 2006. Manual de parasitología: morfología y biología de los parásitos de interés sanitario. Universidad de Barcelona. España. ISBN 84-475-3141-4. 431p.

Gamboa, G. J., Greig, E. I., & Thom, M. C. (2002). The comparative biology of two sympatric paper wasps, the native *Polistes fuscatus* and the invasive *Polistes dominulus* (Hymenoptera, Vespidae). Insectes Sociaux, 49(1), 45-49.

Gogala, A. (2022) Vespid wasps of Slovenia (Hymenoptera: Vespoidea: Vespidae. Slovenian Museum of Natural.

González-Mora, D., & Peris, S. V., 1988. Los Calliphoridae De España: 1: Rhiniinae Y Chrysomyinae (Díptera).

González-Mora, D., 1990. Los Calliphoridae De España, II: Calliphorini (Díptera).

Gumbert, A. (2000). Color choices by bumble bees (*Bombus terrestris*): innate preferences and generalization after learning. Behavioral Ecology and Sociobiology, 48(1), 36-43.

Haenni, J.-P., 1997. Family Scatopsidae. In: Contributions To A Manual of Palaearctic Diptera Volume 2 (L. Papp & B. Darvas, Eds.): 255-272. Science Herald, Budapest.

Haro L., Labadie M., Chanseau P., Cabot C., Blanc-Brisset I., Penouil F., 2010. Medical consequences of the Asian black hornet (*Vespa velutina*) invasion in Southwestern France. Toxicon, 55(2/3):650-652.

Haxaire J., Bouguet J.P., Tamisier J.P., 2006. *Vespa velutina* Lepeletier, 1836, a fearsome new addition to the French fauna (Hym., Vespidae). (*Vespa velutina* Lepeletier, 1836, une redoutable nouveauté pour la faune de France (Hym., Vespidae).) Bulletin de la Société Entomologique de France, 111(2):194

Ings, T & Edwards, R. (2002). "*Dolichovespula sylvestris* (Scopoli,1763)". Bees, Wasps and Ants Recording Society. Retrieved 20 September 2014.

Jandt, J. M., Tibbetts, E. A., & Toth, A. L. (2014). *Polistes* paper wasps: a model genus for the study of social dominance hierarchies. Insectes Sociaux, 61(1), 11-27.

Jones, N., Whitworth, T., & Marshall, S. A., 2019. Blow Flies of North America: Keys to The Subfamilies And Genera Of Calliphoridae, And To The Species Of The Subfamilies Calliphorinae, Luciliinae And Chrysomyinae. Canadian Journal of Arthropod Identification, (39).

Kreuter, K & Bunk, E. (2011). How the social parasitic bumblebee *Bombus bohemicus* sneaks into power of reproduction. Behavioral Ecology and Sociobiology. 66 (3): 475–486.

Krivosheina, N. P., & Menzel, F., 1998. The Palaearctic Species of The Genus *Sylvicola* Harris, 1776 (Diptera, Anisopodidae). Beiträge Zur Entomologie. Contributions to Entomology, 48(1), 201-217.

Landolt, P. J., Sierra, J. M., Unruh, T. R., & Zack, R. S. (2010). A new species of *Vespula*, and first record of *Vespa crabro* L. (Hymenoptera: Vespidae) from Guatemala, Central America. Zootaxa, 2629(1), 61-68.

Lioy, S., Laurino, D., Capello, M., Romano, A., Manino, A., & Porporato, M., 2020. Effectiveness and selectiveness of traps and baits for catching the invasive hornet *Vespa velutina*. Insects, 11(10), 706.

Matsuura, M., & Yamane, S. (1990). Biology of the vespine wasps. Springer Verlag.

Meyer-Rochow, V.B. (2012). Electrophysiology and Histology of the Eye of the Bumblebee *Bombus Hortorum* (L.) (Hymenoptera: Apidae). Journal of the Royal Society of New Zealand. 11 (2): 123–153.

Monceau, K., Bonnard, O., Thiéry, D., 2014. *Vespa velutina*: a new invasive predator of honeybees in Europe. Journal of Pest Science, 87(1), 1-16.

Monclús, M., 1964. Distribucion Y Ecologia De Drosofilidos En España. I. Especies De *Drosophila* De La Region catalana. Genética Ibérica, 16(3-4), 143.

Nieves-Aldrey, J. L., Fontal-Cazalla, F., & Fernández, F., 2006. Introducción a los Hymenoptera de la Región Neotropical. Universidad Nacional de Colombia

Nihei, S. S., & De Carvalho, C. J. B., 2009. The Muscini Flies Of The World (Diptera, Muscidae): Identification Key And Generic Diagnoses. Zootaxa, 1976(1), 1-24.

Oosterbroek, P., 2006. The European Families of the Diptera: Identification-Diagnosis Biology. Brill.

Paini, D. R. (2004). Impact of the introduced honey bee (*Apis mellifera*) (Hymenoptera: Apidae) on native bees: a review. Austral ecology, 29(4), 399-407.

Paudel, Y. P., Mackereth, R., Hanley, R., & Qin, W. (2015). Honey bees (*Apis mellifera* L.) and pollination issues: Current status, impacts, and potential drivers of decline. Journal of Agricultural Science, 7(6), 93.

Peris, S. V., 1967. Los Muscini De La Guinea Española. Claves Para La Identificación Y Notas Sobre Las Especies Etiópicas (Diptera, Muscidae). Boletín De La Real Sociedad Española De Historia Natural (Sección Biológica), 65, 21-64.

Rasmont, P., Coppée, A., Michez, D., & De Meulemeester, T. (2008). An overview of the *Bombus terrestris* (L. 1758) subspecies (Hymenoptera: Apidae). In Annales de la Société entomologique de France, 44 (2), 243-250.

Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., & Bier, E., 2001. A systematic analysis of human disease-associated gene sequences in *Drosophila melanogaster*. Genome research, 11(6), 1114-1125.

Rojas-Nossa, S. V., Novoa, N., Serrano, A., & Calviño-Cancela, M., 2018. Performance of baited traps used as control tools for the invasive hornet *Vespa velutina* and their impact on non-target insects. Apidologie, 49(6), 872-885.

Rozkošný, R., 1997. The European Fanniidae (Diptera). Acta Sci. Nat. Borno, 31(2), 1-80.

Safonkin, A. F., Yatsuk, A. A., & Triseleva, T. A., 2020. Variability Of The Key Features And Revision Of A Group Of Closely Related Species Of Grassflies (Diptera, Chloropidae, *Meromyza*). Zookeys, 942, 65.

Sánchez, O., & Arias, A. (2021). All That Glitters Is Not Gold: The Other Insects That Fall into the Asian Yellow-Legged Hornet *Vespa velutina* 'Specific'Traps. Biology, 10(5), 448.

Scudder, G. G. E., & Cannings, R. A., 2006. The diptera families of British Columbia. Columbia University, 1-163.

Seeley, T. D., & Morse, R. A. (1976). The nest of the honey bee (*Apis mellifera* L.). Insectes Sociaux, 23(4), 495-512.

Southwick, E. E., & Southwick Jr, L., 1992. Estimating the economic value of honeybees (Hymenoptera: Apidae) as agricultural pollinators in the United States. Journal of Economic Entomology, 85(3), 621-633

Steinmetz, I., & Schmolz, E. (2005). Nest odor dynamics in the social wasp *Vespula vulgaris*. Naturwissenschaften, 92(9), 414-418.

Szpila, K., 2009. Key for The Identification Of Third Instars Of European Blowflies (Diptera: Calliphoridae) Of Forensic Importance. In Current Concepts In Forensic Entomology (Pp. 43-56). Springer, Dordrecht.

Vega, J. M., Ortiz-Sánchez, F. J., Martínez-Arcediano, A., Castro, L., Alfaya, T., Carballada, F., ... & Ruiz-León, B. (2022). Social wasps in Spain: the who and where. Allergologia et Immunopathologia, 50(2), 58-64.

Verdú, J. R., Numa, C., & Galante, E. (2011). Atlas y libro rojo de los invertebrados amenazados de España (especies vulnerables). Dirección General de Medio Natural y Política Forestal, Ministerio de Medio Ambiente, Medio Rural y Marino, Madrid.

Villemant, C., Haxaire, J., Streito J.C., 2006. The discovery of the Asian hornet Vespa velutina in France. (La découverte du frelon asiatique *Vespa velutina*, en France.) Insectes, 143(4):3-7.

Walther-Hellwig, K. (2000). Foraging distances of *Bombus muscorum, Bombus lapidaries*, and *Bombus terrestris* (Hymenoptera, Apidae). Journal of Insect Behavior, 13, 239-246.

Whitmore, D., 2009. A Review of The *Sarcophaga* (Heteronychia) (Diptera: Sarcophagidae) Of Sardinia. Zootaxa, 2318(1), 566-588.

Wolf, S., & Moritz, R. F. (2008). Foraging distance in *Bombus terrestris* L. (Hymenoptera: Apidae). Apidologie, 39(4), 419-427.